IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2022016.html
   My bibliography  Save this paper

Time-varying spectral matrix estimation via intrinsic wavelet regression for surfaces of Hermitian positive definite matrices

Author

Listed:
  • Chau, Joris
  • von Sachs, Rainer

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

Intrinsic wavelet transforms and denoising methods are introduced for the purpose of time-varying Fourier spectral matrix estimation. A non-degenerate time-varying spectral matrix constitutes a surface of Hermitian positive definite matrices across time and frequency and any spectral matrix estimator ideally adheres to these geometric constraints. Spectral matrix estimation of a locally stationary time series by means of linear or nonlinear wavelet shrinkage naturally respects positive definiteness at each time-frequency point, without any postprocessing. Moreover, the spectral matrix estimator enjoys equivariance in the sense that it does not nontrivially depend on the chosen basis or coordinate system of the multivariate time series. The algorithmic construction is based on a second-generation average-interpolating wavelet transform in the space of Hermitian positive definite matrices equipped with an affine-invariant metric. The wavelet coefficient decay and linear wavelet thresholding convergence rates of intrinsically smooth surfaces of Hermitian positive definite matrices are derived. Furthermore, practical nonlinear thresholding based on the trace of the matrix-valued wavelet coefficients is investigated. Finally, the time-varying spectral matrix of a nonstationary multivariate electroencephalography (EEG) time series recorded during an epileptic brain seizure is estimated.

Suggested Citation

  • Chau, Joris & von Sachs, Rainer, 2021. "Time-varying spectral matrix estimation via intrinsic wavelet regression for surfaces of Hermitian positive definite matrices," LIDAM Reprints ISBA 2022016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2022016
    DOI: https://doi.org/10.1016/j.csda.2022.107477
    Note: In: Computational Statistics & Data Analysis, 2022, 107477
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2022016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.