IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2021029.html
   My bibliography  Save this paper

Efron’s asymptotic monotonicity property in the Gaussian stable domain of attraction

Author

Listed:
  • Denuit, Michel

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Robert, Christian Y.

Abstract

In Efron (1965), Efron studied the stochastic increasingness of the vector of independent random variables entering a sum, given the value of the sum. Precisely, he proved that log-concavity for the distributions of the random variables ensures that the vector becomes larger (in the sense of the usual multivariate stochastic order) when the sum is known to increase. This result is known as Efron’s “monotonicity property”. Under the condition that the random variables entering in the sum have density functions with bounded second derivatives, we investigate whether Efron’s monotonicity property generalizes when sums involve a large number of terms to which a central-limit theorem applies.

Suggested Citation

  • Denuit, Michel & Robert, Christian Y., 2021. "Efron’s asymptotic monotonicity property in the Gaussian stable domain of attraction," LIDAM Reprints ISBA 2021029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2021029
    DOI: https://doi.org/10.1016/j.jmva.2021.104803
    Note: In: Journal of Multivariate Analysis, 2021, vol. 186, 104803
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denuit, Michel & Dhaene, Jan & Ghossoub, Mario & Robert, Christian Y., 2023. "Comonotonicity and Pareto Optimality, with Application to Collaborative Insurance," LIDAM Discussion Papers ISBA 2023005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Denuit, Michel & Robert, Christian Y., 2022. "Dynamic conditional mean risk sharing in the compound Poisson surplus model," LIDAM Discussion Papers ISBA 2022034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Denuit, Michel & Robert, Christian Y., 2023. "Conditional mean risk sharing of losses at occurrence time in the compound Poisson surplus model," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 23-32.
    4. Denuit, Michel & Robert, Christian Y., 2023. "From risk reduction to risk elimination by conditional mean risk sharing of independent losses," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 46-59.
    5. Denuit, Michel & Robert, Christian Y., 2023. "Conditional mean risk sharing of independent discrete losses in large pools," LIDAM Discussion Papers ISBA 2023010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2021029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.