IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2021003.html
   My bibliography  Save this paper

Empirical tail copulas for functional data

Author

Listed:
  • Einmahl, John H.
  • Segers, Johan

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

For multivariate distributions in the domain of attraction of a max-stable distribution, the tail copula and the stable tail dependence function are equivalent ways to capture the dependence in the upper tail. The empirical versions of these functions are rank-based estimators whose inflated estimation errors are known to converge weakly to a Gaussian process that is similar in structure to the weak limit of the empirical copula process. We extend this multivariate result to continuous functional data by establishing the asymptotic normality of the estimators of the tail copula, uniformly over all finite subsets of at most D points (D fixed). An application for testing tail copula stationarity is presented. The main tool for deriving the result is the uniform asymptotic normality of all the D-variate tail empirical processes. The proof of the main result is non-standard.

Suggested Citation

  • Einmahl, John H. & Segers, Johan, 2021. "Empirical tail copulas for functional data," LIDAM Reprints ISBA 2021003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2021003
    Note: In: Annals of Statistics, , p. to appear (2021)
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Einmahl, John & Zhou, C., 2024. "Tail Copula Estimation for Heteroscedastic Extremes," Discussion Paper 2024-003, Tilburg University, Center for Economic Research.
    2. Einmahl, John & Zhou, C., 2024. "Tail Copula Estimation for Heteroscedastic Extremes," Other publications TiSEM 6bcb09c5-8b19-48b8-9320-b, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2021003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.