IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2020042.html
   My bibliography  Save this paper

A general approach for cure models in survival analysis

Author

Listed:
  • Patilea, Valentin
  • Van Keilegom, Ingrid

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

In survival analysis it often happens that some subjects under study do not experience the event of interest; they are considered to be ‘cured’. The population is thus a mixture of two subpopulations : the one of cured subjects, and the one of ‘susceptible’ subjects. In this paper we propose a novel approach to estimate a mixture cure model when covariates are present and the lifetime is subject to random right censoring. We work with a parametric model for the cure proportion (like e.g. a logistic model), while the conditional survival function of the uncured subjects is unspecified. The approach is based on an inversion which allows to write the survival function as a function of the distribution of the observable random variables. This leads to a very general class of models, which allows a flexible and rich modeling of the conditional survival function. We show the identifiability of the proposed model, as well as the weak consistency and the asymptotic normality of the model parameters. We also consider in more detail the case where kernel estimators are used for the nonparametric part of the model. The new estimators are compared with the estimators from a Cox mixture cure model via finite sample simulations. Finally, we apply the new model and estimation procedure on two medical data sets.

Suggested Citation

  • Patilea, Valentin & Van Keilegom, Ingrid, 2020. "A general approach for cure models in survival analysis," LIDAM Reprints ISBA 2020042, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2020042
    DOI: https://doi.org/10.1214/19-AOS1889
    Note: In: Annals of Statistics, Vol. 48, no. 4, p. 2323-2346 (2020)
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    2. Ana López-Cheda & Yingwei Peng & María Amalia Jácome, 2023. "Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 467-495, June.
    3. Wende Clarence Safari & Ignacio López-de-Ullibarri & María Amalia Jácome, 2023. "Latency function estimation under the mixture cure model when the cure status is available," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 608-627, July.
    4. Bo Han & Xiaoguang Wang, 2023. "Comments on: Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 496-498, June.
    5. Minnie M. Joo & Brandon Bolte & Nguyen Huynh & Bumba Mukherjee, 2023. "Bayesian Spatial Split-Population Survival Model with Applications to Democratic Regime Failure and Civil War Recurrence," Mathematics, MDPI, vol. 11(8), pages 1-23, April.
    6. Motahareh Parsa & Ingrid Van Keilegom, 2023. "Accelerated failure time vs Cox proportional hazards mixture cure models: David vs Goliath?," Statistical Papers, Springer, vol. 64(3), pages 835-855, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2020042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.