IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2020010.html
   My bibliography  Save this paper

Linear censored quantile regression: A novel minimum‐distance approach

Author

Listed:
  • De Backer, Mickaël

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • El Ghouch, Anouar

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Van Keilegom, Ingrid

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

In this article, we investigate a new procedure for the estimation of a linear quantile regression with possibly right‐censored responses. Contrary to the main literature on the subject, we propose in this context to circumvent the formulation of conditional quantiles through the so‐called “check” loss function that stems from the influential work of Koenker and Bassett (1978). Instead, our suggestion is here to estimate the quantile coefficients by minimizing an alternative measure of distance. In fact, our approach could be qualified as a generalization in a parametric regression framework of the technique consisting in inverting the conditional distribution of the response given the covariates. This is motivated by the knowledge that the main literature for censored data already relies on some nonparametric conditional distribution estimation as well. The ideas of effective dimension reduction are then exploited in order to accommodate for higher dimensional settings as well in this context. Extensive numerical results then suggest that such an approach provides a strongly competitive procedure to the classical approaches based on the check function, in fact both for complete and censored observations. From a theoretical prospect, both consistency and asymptotic normality of the proposed estimator for linear regression are obtained under classical regularity conditions. As a by‐product, several asymptotic results on some “double‐kernel” version of the conditional Kaplan–Meier distribution estimator based on effective dimension reduction, and its corresponding density estimator, are also obtained and may be of interest on their own. A brief application of our procedure to quasar data then serves to further highlight the relevance of the latter for quantile regression estimation with censored data.

Suggested Citation

  • De Backer, Mickaël & El Ghouch, Anouar & Van Keilegom, Ingrid, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," LIDAM Reprints ISBA 2020010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2020010
    DOI: https://doi.org/10.1111/sjos.12475
    Note: In : Scandinavian Journal of Statistics - Vol. 47, p. 1275-1306, 2020
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mercedes Conde‐Amboage & Ingrid Van Keilegom & Wenceslao González‐Manteiga, 2021. "A new lack‐of‐fit test for quantile regression with censored data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 655-688, June.
    2. Gabriela M. Rodrigues & Edwin M. M. Ortega & Gauss M. Cordeiro & Roberto Vila, 2023. "Quantile Regression with a New Exponentiated Odd Log-Logistic Weibull Distribution," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    3. Worku Biyadgie Ewnetu & Irène Gijbels & Anneleen Verhasselt, 2024. "Two-piece distribution based semi-parametric quantile regression for right censored data," Statistical Papers, Springer, vol. 65(5), pages 2775-2810, July.
    4. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2022. "Instrumental variable quantile regression under random right censoring," Papers 2209.01429, arXiv.org, revised Feb 2023.
    5. Lorenzo Tedesco & Jad Beyhum & Ingrid Van Keilegom, 2023. "Instrumental variable estimation of the proportional hazards model by presmoothing," Papers 2309.02183, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2020010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.