IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2016021.html
   My bibliography  Save this paper

Heteroscedastic semiparametric transformation models: estimation and testing for validity

Author

Listed:
  • Neumeyer, Natalie
  • Noh, Hohsuk
  • Van Keilegom, Ingrid

Abstract

No abstract is available for this item.

Suggested Citation

  • Neumeyer, Natalie & Noh, Hohsuk & Van Keilegom, Ingrid, 2016. "Heteroscedastic semiparametric transformation models: estimation and testing for validity," LIDAM Reprints ISBA 2016021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2016021
    Note: In : Statistica Sinica, vol. 26, p. 925-954 (2016)
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colling, Benjamin & Van Keilegom, Ingrid, 2016. "Goodness-of-fit tests in semiparametric transformation models using the integrated regression function," LIDAM Discussion Papers ISBA 2016031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Nick Kloodt & Natalie Neumeyer & Ingrid Keilegom, 2021. "Specification testing in semi-parametric transformation models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 980-1003, December.
    3. Kloodt, Nick & Neumeyer, Natalie, 2020. "Specification tests in semiparametric transformation models — A multiplier bootstrap approach," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    4. Racine, Jeffrey S. & Li, Kevin, 2017. "Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach," Journal of Econometrics, Elsevier, vol. 201(1), pages 72-94.
    5. Colling, Benjamin & Van Keilegom, Ingrid, 2017. "Goodness-of-fit tests in semiparametric transformation models using the integrated regression function," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 10-30.
    6. J. S. Allison & M. Hušková & S. G. Meintanis, 2018. "Testing the adequacy of semiparametric transformation models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-94, March.
    7. Marie Hušková & Simos G. Meintanis & Charl Pretorius, 2022. "Tests for heteroskedasticity in transformation models," Statistical Papers, Springer, vol. 63(4), pages 1013-1049, August.
    8. Kloodt, Nick, 2021. "Identification in a fully nonparametric transformation model with heteroscedasticity," Statistics & Probability Letters, Elsevier, vol. 170(C).
    9. Hušková, Marie & Meintanis, Simos G. & Pretorius, Charl, 2020. "Tests for validity of the semiparametric heteroskedastic transformation model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    10. Sven Klaassen & Jannis Kueck & Martin Spindler, 2017. "Transformation Models in High-Dimensions," Papers 1712.07364, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2016021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.