IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2016013.html
   My bibliography  Save this paper

Efficiency and benchmarking with directional distances: a data-driven approach

Author

Listed:
  • Daraio, Cinzia
  • Simar, Leopold

Abstract

In efficiency analysis the assessment of the performance of Decision Making Units (DMUs) relays on the selection of the direction along which the distance from the efficient frontier is measured. Directional Distance Functions (DDFs) represent a flexible way to gauge the inefficiency of DMUs. Permitting the selection of a direction towards the efficient frontier is often useful in empirical applications. As a matter of fact, many papers in the literature have proposed specific DDFs suitable for different contexts of application. Nevertheless, the selection of a direction implies the choice of an efficiency target which is imposed to all the analyzed DMUs. Moreover, there exist many situations in which there is no a priori economic or managerial rationale to impose a subjective efficiency target. In this paper we propose a data-driven approach to find out an “objective†direction along which to gauge the inefficiency of each DMU. Our approach permits to take into account for the heterogeneity of DMUs and their diverse contexts that may influence their input and/or output mixes. Our method is also a data driven technique for benchmarking each DMU. We describe how to implement our framework and illustrate its usefulness with simulated and real datasets.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Daraio, Cinzia & Simar, Leopold, 2016. "Efficiency and benchmarking with directional distances: a data-driven approach," LIDAM Reprints ISBA 2016013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2016013
    Note: In : The journal of the Operational Research Society, vol. 67, p. 928-944 (2016)
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Simar, Léopold & Vanhems, Anne, 2012. "Probabilistic characterization of directional distances and their robust versions," Journal of Econometrics, Elsevier, vol. 166(2), pages 342-354.
    2. Daraio, Cinzia & Simar, Léopold, 2014. "Directional distances and their robust versions: Computational and testing issues," European Journal of Operational Research, Elsevier, vol. 237(1), pages 358-369.
    3. K Kerstens & A Mounir & I Van de Woestyne, 2012. "Benchmarking mean-variance portfolios using a shortage function: the choice of direction vector affects rankings!," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(9), pages 1199-1212, September.
    4. Jose Zofio & Jesus Pastor & Juan Aparicio, 2013. "The directional profit efficiency measure: on why profit inefficiency is either technical or allocative," Journal of Productivity Analysis, Springer, vol. 40(3), pages 257-266, December.
    5. Léopold Simar & Paul Wilson, 2011. "Inference by the m out of n bootstrap in nonparametric frontier models," Journal of Productivity Analysis, Springer, vol. 36(1), pages 33-53, August.
    6. Dyson, Robert G., 2004. "Strategic development and SWOT analysis at the University of Warwick," European Journal of Operational Research, Elsevier, vol. 152(3), pages 631-640, February.
    7. Simar, Léopold & Vanhems, Anne & Wilson, Paul W., 2012. "Statistical inference for DEA estimators of directional distances," European Journal of Operational Research, Elsevier, vol. 220(3), pages 853-864.
    8. Wilson, Paul W, 1993. "Detecting Outliers in Deterministic Nonparametric Frontier Models with Multiple Outputs," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 319-323, July.
    9. K Kerstens & I Van de Woestyne, 2011. "Negative data in DEA: a simple proportional distance function approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1413-1419, July.
    10. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, January.
    11. Peter Hall & Qi Li & Jeffrey S. Racine, 2007. "Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 784-789, November.
    12. A. Charnes & W. W. Cooper & E. Rhodes, 1981. "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through," Management Science, INFORMS, vol. 27(6), pages 668-697, June.
    13. Rolf Färe & Shawna Grosskopf, 2000. "Theory and Application of Directional Distance Functions," Journal of Productivity Analysis, Springer, vol. 13(2), pages 93-103, March.
    14. Peter Bogetoft, 1997. "DEA-based yardstick competition: The optimality of best practice regulation," Annals of Operations Research, Springer, vol. 73(0), pages 277-298, October.
    15. Korhonen, Pekka & Tainio, Risto & Wallenius, Jyrki, 2001. "Value efficiency analysis of academic research," European Journal of Operational Research, Elsevier, vol. 130(1), pages 121-132, April.
    16. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    17. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    18. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    19. R. Färe & S. Grosskopf & G. Whittaker, 2013. "Directional output distance functions: endogenous directions based on exogenous normalization constraints," Journal of Productivity Analysis, Springer, vol. 40(3), pages 267-269, December.
    20. Jeffrey Racine, 2008. "Nonparametric econometrics: a primer (in Russian)," Quantile, Quantile, issue 4, pages 7-56, March.
    21. Racine, Jeffrey S., 2008. "Nonparametric Econometrics: A Primer," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(1), pages 1-88, March.
    22. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    23. Marco Di Marzio & Agnese Panzera & Charles C. Taylor, 2013. "Non-parametric Regression for Circular Responses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 238-255, June.
    24. Antonio Peyrache & Cinzia Daraio, 2012. "Empirical tools to assess the sensitivity of directional distance functions to direction selection," Applied Economics, Taylor & Francis Journals, vol. 44(8), pages 933-943, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thyago Celso Cavalcante Nepomuceno & Katarina Tatiana Marques Santiago & Cinzia Daraio & Ana Paula Cabral Seixas Costa, 2022. "Exogenous crimes and the assessment of public safety efficiency and effectiveness," Annals of Operations Research, Springer, vol. 316(2), pages 1349-1382, September.
    2. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    3. Christopher Bruffaerts & Bram De Rock & Catherine Dehon, 2014. "Outlier Detection in Nonparametric Frontier Models," Working Papers ECARES ECARES 2014-12, ULB -- Universite Libre de Bruxelles.
    4. Fangqing Wei & Junfei Chu & Jiayun Song & Feng Yang, 2019. "A cross-bargaining game approach for direction selection in the directional distance function," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 787-807, September.
    5. Simar, Léopold & Vanhems, Anne & Wilson, Paul W., 2012. "Statistical inference for DEA estimators of directional distances," European Journal of Operational Research, Elsevier, vol. 220(3), pages 853-864.
    6. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2020. "Fast and efficient computation of directional distance estimators," Annals of Operations Research, Springer, vol. 288(2), pages 805-835, May.
    7. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    8. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    9. Paulo Matos & Guilherme Padilha & Maurício Benegas, 2016. "On the management efficiency of Brazilian stock mutual funds," Operational Research, Springer, vol. 16(3), pages 365-399, October.
    10. Daraio, Cinzia & Simar, Léopold, 2014. "Directional distances and their robust versions: Computational and testing issues," European Journal of Operational Research, Elsevier, vol. 237(1), pages 358-369.
    11. Camanho, Ana Santos & Silva, Maria Conceicao & Piran, Fabio Sartori & Lacerda, Daniel Pacheco, 2024. "A literature review of economic efficiency assessments using Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 315(1), pages 1-18.
    12. Daraio, Cinzia & Simar, Leopold & Wilson, Paul, 2019. "Quality and its impact on efficiency," LIDAM Discussion Papers ISBA 2019004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Deng, Zhongqi & Jiang, Nan & Pang, Ruizhi, 2021. "Factor-analysis-based directional distance function: The case of New Zealand hospitals," Omega, Elsevier, vol. 98(C).
    14. Daraio, Cinzia & Bonaccorsi, Andrea & Simar, Léopold, 2015. "Efficiency and economies of scale and specialization in European universities: A directional distance approach," Journal of Informetrics, Elsevier, vol. 9(3), pages 430-448.
    15. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "Economic growth and environmental efficiency: Evidence from US regions," Economics Letters, Elsevier, vol. 120(1), pages 48-52.
    16. Rogge, Nicky & Simper, Richard & Verschelde, Marijn & Hall, Maximilian, 2015. "An analysis of managerialism and performance in English and Welsh male prisons," European Journal of Operational Research, Elsevier, vol. 241(1), pages 224-235.
    17. Tzeremes, Nickolaos G., 2015. "Efficiency dynamics in Indian banking: A conditional directional distance approach," European Journal of Operational Research, Elsevier, vol. 240(3), pages 807-818.
    18. Daraio, Cinzia & Simar, Léopold & Wilson, Paul W., 2021. "Quality as a latent heterogeneity factor in the efficiency of universities," Economic Modelling, Elsevier, vol. 99(C).
    19. Giménez, Víctor & Prior, Diego & Thieme, Claudio & Tortosa-Ausina, Emili, 2024. "International comparisons of COVID-19 pandemic management: What can be learned from activity analysis techniques?," Omega, Elsevier, vol. 122(C).
    20. Vardanyan, Michael & Valdmanis, Vivian G. & Leleu, Hervé & Ferrier, Gary D., 2022. "Estimating technology characteristics of the U.S. hospital industry using directional distance functions with optimal directions," Omega, Elsevier, vol. 113(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2016013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.