IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2010029.html
   My bibliography  Save this paper

Generalized increasing convex and directionally convex orders

Author

Listed:
  • Denuit, Michel
  • Mesfioui, Mhamed

Abstract

No abstract is available for this item.

Suggested Citation

  • Denuit, Michel & Mesfioui, Mhamed, 2010. "Generalized increasing convex and directionally convex orders," LIDAM Reprints ISBA 2010029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2010029
    Note: In : Journal of Applied Probability, vol. 47, no. 1, p. 264-276 (2010)
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denuit, Michel & Mesfioui, Mhamed, 2012. "A sufficient condition of crossing-type for the bivariate orthant convex order," LIDAM Discussion Papers ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Christoph Heinzel, 2014. "Term structure of discount rates under multivariate s-ordered consumption growth," Working Papers SMART 14-01, INRAE UMR SMART.
    3. Muller, Christophe & Trannoy, Alain, 2012. "Multidimensional inequality comparisons: A compensation perspective," Journal of Economic Theory, Elsevier, vol. 147(4), pages 1427-1449.
    4. Mesfioui, Mhamed & Denuit, Michel, 2014. "Comonotonicity, orthant convex order and sums of random variables," LIDAM Discussion Papers ISBA 2014002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Michel M. Denuit & Mhamed Mesfioui, 2016. "Multivariate Higher-Degree Stochastic Increasing Convexity," Journal of Theoretical Probability, Springer, vol. 29(4), pages 1599-1623, December.
    6. Denuit, Michel M. & Mesfioui, Mhamed, 2017. "Preserving the Rothschild–Stiglitz type increase in risk with background risk: A characterization," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 1-5.
    7. Mesfioui, Mhamed & Denuit, Michel M., 2015. "Comonotonicity, orthant convex order and sums of random variables," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 356-364.
    8. Francesco Andreoli & Claudio Zoli, 2020. "From unidimensional to multidimensional inequality: a review," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 5-42, April.
    9. He, Junnan & Tang, Qihe & Zhang, Huan, 2016. "Risk reducers in convex order," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 80-88.
    10. J. M. Fernández-Ponce & M. R. Rodríguez-Griñolo, 2017. "New properties of the orthant convex-type stochastic orders," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 618-637, September.
    11. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    12. Denuit, Michel & Mesfioui, Mhamed, 2013. "A sufficient condition of crossing type for the bivariate orthant convex order," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 157-162.
    13. Denuit, Michel & Mesfioui, Mhamed, 2013. "Multivariate higher-degree stochastic increasing convexity," LIDAM Discussion Papers ISBA 2013016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2010029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.