IDEAS home Printed from https://ideas.repec.org/p/ags/ugidic/159072.html
   My bibliography  Save this paper

Radar remote sensing for surveying and monitoring of earthquakes and mass movements in Southern Kyrgyzstan

Author

Listed:
  • Teshebaeva, Kanayim
  • Sudhaus, Henriette
  • Wetzel, Hans-Ulrich
  • Echtler, Helmut
  • Zubovich, Alexander
  • Roessner, Sigrid

Abstract

Kyrgyzstan is landlocked mountainous nation of around five million people, which borders China, Kazakhstan, Tajikistan and Uzbekistan. The total area of high mountainous terrain, alpine meadows and pastures exceeds 70% of the Republic’s territory, whereas the greater part of the Kyrgyz Republic is occupied by the Tien-Shan mountains. Kyrgyzstan is a highly active seismic region and has been shaken by numerous significant earthquakes as a consequence of the ongoing collision between the Indian and Eurasian tectonic plates. In the result, the mountainous country is faced with a large variety of natural hazards (mainly earthquakes, large landslides and floods) which frequently lead to the occurrence of natural disaster (e.g., 1994: about 1,000 landslides failed and 115 human fatalities; 2008: Nura earthquake M=6.6, 74 human fatalities and 150 injured, 90 glacial lakes endangered for regularly occurring outburst floods). Under these conditions, there is high demand for efficient and spatially differentiated hazard assessment requiring an improved understanding of natural processes with high hazardous potential. Since large areas with often limited accessibility are affected, satellite remote sensing plays an important role in contributing to improved process knowledge in this region (Roessner et al., 2005). In the presented work the potential of advanced remote sensing techniques based on Synthetic Aperture Radar (SAR) satellite data is investigated for characterizing spatio-temporal surface changes related to mass movement and earthquakes. Methodological focus has been put on using Differential SAR Interferometry (InSAR) based on data from different satellites for detecting surface displacements as a consequence of slope instabilities and earthquakes in Southern Kyrgyzstan. In the presented work we focus on one study site of high landslide activity in the Osh province and on another study site which has been affected by the recent destructive Nura earthquake in 2008.

Suggested Citation

  • Teshebaeva, Kanayim & Sudhaus, Henriette & Wetzel, Hans-Ulrich & Echtler, Helmut & Zubovich, Alexander & Roessner, Sigrid, 2013. "Radar remote sensing for surveying and monitoring of earthquakes and mass movements in Southern Kyrgyzstan," International Conference and Young Researchers Forum - Natural Resource Use in Central Asia: Institutional Challenges and the Contribution of Capacity Building 159072, University of Giessen (JLU Giessen), Center for International Development and Environmental Research.
  • Handle: RePEc:ags:ugidic:159072
    DOI: 10.22004/ag.econ.159072
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/159072/files/Abstract_Teshebaeva.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.159072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sigrid Roessner & Hans-Ulrich Wetzel & Hermann Kaufmann & Aman Sarnagoev, 2005. "Potential of Satellite Remote Sensing and GIS for Landslide Hazard Assessment in Southern Kyrgyzstan (Central Asia)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(3), pages 395-416, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Bryson Touchstone & Kathleen Sherman-Morris, 2016. "Vulnerability to prolonged cold: a case study of the Zeravshan Valley of Tajikistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1279-1300, September.
    2. Christian Geiß & Hannes Taubenböck, 2013. "Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 7-48, August.
    3. Vahed Ghiasi & Seyed Amir Reza Ghasemi & Mahyar Yousefi, 2021. "Landslide susceptibility mapping through continuous fuzzification and geometric average multi-criteria decision-making approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 795-808, May.
    4. Darya Golovko & Sigrid Roessner & Robert Behling & Birgit Kleinschmit, 2017. "Automated derivation and spatio-temporal analysis of landslide properties in southern Kyrgyzstan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1461-1488, February.
    5. D. Alexakis & A. Agapiou & M. Tzouvaras & K. Themistocleous & K. Neocleous & S. Michaelides & D. Hadjimitsis, 2014. "Integrated use of GIS and remote sensing for monitoring landslides in transportation pavements: the case study of Paphos area in Cyprus," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(1), pages 119-141, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ugidic:159072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/zegiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.