IDEAS home Printed from https://ideas.repec.org/p/ags/ncrone/18954.html
   My bibliography  Save this paper

Underpinnings For Prospective, Net Revenue Forecasting In Hog Finishing: Characterizing The Joint Distribution Of Corn, Soybean Meal And Lean Hogs Time Series

Author

Listed:
  • Shao, Renyuan
  • Roe, Brian E.

Abstract

This research focuses on developing a biannual net revenue forecasting model for hog producers based on Monte Carlo simulation of the joint distribution of hog, corn and soybean meal price series. The relative forecasting power of historical volatility, implied volatility and GARCH-based volatility is examined. Consistent with recent research, the performance of these three methods is both commodity and horizon specific, which means there is no single best predictor. However, implied volatility often performs well. Thus, implied volatility is used to forecast variance. Historical covariance is introduced to capture the co-movement of the three price series. Our forecasting model performs well out of sample; most of the realized net revenues fall in 95 percent prediction interval. Based on this forecasting model and the assumption of a utility function, we compare our prospective evaluation with retrospective evaluation of risk management strategies. Though prospective evaluation is not significantly superior to retrospective evaluation for this particular dataset, it is useful because all the market information has been incorporated in this model and because it did protect producers from adverse price movements.

Suggested Citation

  • Shao, Renyuan & Roe, Brian E., 2001. "Underpinnings For Prospective, Net Revenue Forecasting In Hog Finishing: Characterizing The Joint Distribution Of Corn, Soybean Meal And Lean Hogs Time Series," 2001 Conference, April 23-24, 2001, St. Louis, Missouri 18954, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
  • Handle: RePEc:ags:ncrone:18954
    DOI: 10.22004/ag.econ.18954
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/18954/files/cp01sh01.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.18954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    2. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    3. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
    4. Kroner, Kenneth F. & Kneafsey, Devin P. & Claessens, Stijn & DEC, 1993. "Forecasting volatility in commodity markets," Policy Research Working Paper Series 1226, The World Bank.
    5. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    6. Amin, Kaushik I & Ng, Victor K, 1997. "Inferring Future Volatility from the Information in Implied Volatility in Eurodollar Options: A New Approach," The Review of Financial Studies, Society for Financial Studies, vol. 10(2), pages 333-367.
    7. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Gang & Roberts, Matthew C. & Roe, Brian E., 2005. "Managing Livestock Feed Cost Risks Using Futures and Options," 2005 Annual meeting, July 24-27, Providence, RI 19399, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Renyuan Shao & Brian Roe, 2003. "The design and pricing of fixed‐ and moving‐window contracts: An application of Asian‐Basket option pricing methods to the hog‐finishing sector," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(11), pages 1047-1073, November.
    3. Chen, Gang & Roberts, Matthew C. & Roe, Brian E., 2005. "Forecasting Livestock Feed Cost Risks Using Futures and Options," 2005 Conference, April 18-19, 2005, St. Louis, Missouri 19048, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Jose A. Lopez & Christian Walter, 1997. "Is implied correlation worth calculating? Evidence from foreign exchange options and historical data," Research Paper 9730, Federal Reserve Bank of New York.
    3. Neely, Christopher J., 2009. "Forecasting foreign exchange volatility: Why is implied volatility biased and inefficient? And does it matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 188-205, February.
    4. Giulio, Cifarelli, 2004. "Yes, implied volatilities are not informationally efficient: an empirical estimate using options on interest rate futures contracts," MPRA Paper 28655, University Library of Munich, Germany.
    5. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    6. Cifarelli, giulio, 2002. "The information content of implied volatilities of options on eurodeposit futures traded on the LIFFE: is there long memory?," MPRA Paper 28538, University Library of Munich, Germany.
    7. Christiansen, Charlotte & Strunk Hansen, Charlotte, 2000. "Implied Volatility of Interest Rate Options: An Empirical Investigation of the Market Model," Finance Working Papers 00-1, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    8. F. Gonzalez Miranda & N. Burgess, 1997. "Modelling market volatilities: the neural network perspective," The European Journal of Finance, Taylor & Francis Journals, vol. 3(2), pages 137-157.
    9. Szakmary, Andrew & Ors, Evren & Kyoung Kim, Jin & Davidson, Wallace III, 2003. "The predictive power of implied volatility: Evidence from 35 futures markets," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2151-2175, November.
    10. Duarte, Jefferson & Longstaff, Francis A. & Yu, Fan, 2005. "Risk and Return in Fixed Income Arbitage: Nickels in Front of a Steamroller?," University of California at Los Angeles, Anderson Graduate School of Management qt6zx6m7fp, Anderson Graduate School of Management, UCLA.
    11. Davidson, Wallace N. & Kim, Jin Kyoung & Ors, Evren & Szakmary, Andrew, 2001. "Using implied volatility on options to measure the relation between asset returns and variability," Journal of Banking & Finance, Elsevier, vol. 25(7), pages 1245-1269, July.
    12. Cremers, Martijn & Fleckenstein, Matthias & Gandhi, Priyank, 2021. "Treasury yield implied volatility and real activity," Journal of Financial Economics, Elsevier, vol. 140(2), pages 412-435.
    13. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    14. Prokopczuk, Marcel & Wese Simen, Chardin, 2014. "The importance of the volatility risk premium for volatility forecasting," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 303-320.
    15. Campa, Jose Manuel & Chang, P. H. Kevin, 1998. "The forecasting ability of correlations implied in foreign exchange options," Journal of International Money and Finance, Elsevier, vol. 17(6), pages 855-880, December.
    16. Bent Jesper Christensen & Charlotte Strunk Hansen, 2002. "New evidence on the implied-realized volatility relation," The European Journal of Finance, Taylor & Francis Journals, vol. 8(2), pages 187-205, June.
    17. Chong, James, 2005. "The forecasting abilities of implied and econometric variance-covariance models across financial measures," Journal of Economics and Business, Elsevier, vol. 57(5), pages 463-490.
    18. Renyuan Shao & Brian Roe, 2003. "The design and pricing of fixed‐ and moving‐window contracts: An application of Asian‐Basket option pricing methods to the hog‐finishing sector," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(11), pages 1047-1073, November.
    19. José R. Aragonés & Carlos Blanco & Pablo García Estévez, 2007. "Neural network volatility forecasts," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 107-121, July.
    20. Ederington, Louis & Guan, Wei, 2005. "The information frown in option prices," Journal of Banking & Finance, Elsevier, vol. 29(6), pages 1429-1457, June.

    More about this item

    Keywords

    Livestock Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ncrone:18954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dauiuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.