Author
Listed:
- Drysdale, G.
- Metternicht, G.
Abstract
This paper analyses the potential and limitations of airborne remote sensing systems for detecting crop growth variability and weed infestation within paddocks at specified capture times. The detection of areas of crop growth variability can help farmers become aware of regions within their paddock where they may be experiencing above and below average yields due to changes in soil or management conditions. For instance, the early detection of weed infestation within cereal crops is crucial for lessening their impact on the final yield. Transect sampling within a canola paddock of a broad acre agricultural property in the South West of Western Australia was conducted synchronous with the capture of 1m spatial resolution DMSI. The four individual bands (blue, green, red and near- infrared) of the DMSI were correlated with LAI and weed density counts collected in the paddock. Statistical analyses show the LAI of canola had strong negative correlations with the blue (-0.93) and red (-0.89) bands and a strong positive correlation was found with the near-infrared band (0.82). The strong correlations between the canola LAI and selected bands of the DMSI indicate that this may be a suitable technique for monitoring canola variability to derive information layers that can be used in creating meaningful "within-field" management units. Likewise, DMSI could be used as a non-invasive tool for in season crop monitoring. The correlation analysis with the weed density (e.g. self sown wheat, ryegrass and clover) attributed to only one negative weak correlation with the red band (-0.38). The less successful detection of weeds is attributed to the minimal weeddensity within the paddock (e.g. mean 34 plants m-2) and indistinct spectral difference from canola at the early time of imagery capture required by farmers for effective variable rate applications of herbicides.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ifma03:24341. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/ifmaaea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.