IDEAS home Printed from https://ideas.repec.org/p/ags/feemcl/148921.html
   My bibliography  Save this paper

Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data

Author

Listed:
  • Noailly, Joëlle
  • Smeets, Roger

Abstract

This paper investigates the determinants of directed technical change in the electricity generation sector. We use firm-level data on patents led in renewable (REN) and fossil fuel (FF) technologies by about 7,000 European firms over the period 1978-2006. We separately study specialized firms that innovate in only one type of technology during the sample period, and mixed firms that innovate in both technologies. We find that for specialized firms the main drivers of innovation are fossil-fuel prices, market size, and firms' past knowledge stocks. Also, prices and market size drive the entry of new REN firms into innovation. By contrast, we find that innovation by mixed firms is mainly driven by strong path-dependencies since for these firms past knowledge stock is the major driver of the direction of innovation. These results imply that generic environmental policies that affect prices and energy demand are mainly effective in directing innovation by small specialized firms. In order to direct innovation e orts of large mixed corporations with a long history of FF innovation, targeted R&D policies are likely to be more effective.

Suggested Citation

  • Noailly, Joëlle & Smeets, Roger, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," Climate Change and Sustainable Development 148921, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemcl:148921
    DOI: 10.22004/ag.econ.148921
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/148921/files/745144020.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.148921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Witajewski-Baltvilks & Elena Verdolini & Massimo Tavoni, 2015. "Directed Technological Change and Energy Efficiency Improvements," Working Papers 2015.78, Fondazione Eni Enrico Mattei.
    2. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2017. "Induced technological change and energy efficiency improvements," Energy Economics, Elsevier, vol. 68(S1), pages 17-32.
    3. Geraldine Ang & Dirk Röttgers & Pralhad Burli, 2017. "The empirics of enabling investment and innovation in renewable energy," OECD Environment Working Papers 123, OECD Publishing.
    4. Joëlle Noailly & Victoria Shestalova, 2013. "Knowledge spillovers from renewable energy technologies, Lessons from patent citations," CPB Discussion Paper 262, CPB Netherlands Bureau for Economic Policy Analysis.
    5. Piao, Zhefan & Miao, Binbin & Zheng, Zihan & Xu, Feng, 2022. "Technological innovation efficiency and its impact factors: An investigation of China's listed energy companies," Energy Economics, Elsevier, vol. 112(C).
    6. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    7. Yang, Bo & Liu, Baozhen & Peng, Jiachao & Liu, Xujun, 2022. "The impact of the embedded global value chain position on energy-biased technology progress: Evidence from chinas manufacturing," Technology in Society, Elsevier, vol. 71(C).
    8. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2020. "Effectiveness of an ‘open innovation’ approach in renewable energy: Empirical evidence from a survey on solar and wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    9. Joelle Noailly & Victoria Shestalova, 2013. "Knowledge Spillovers from Renewable energy Technologies, Lessons from patent citations," CIES Research Paper series 22-2013, Centre for International Environmental Studies, The Graduate Institute.
    10. Huang, Xiaoqi & Liu, Wei & Zhang, Zhan & Zhao, Zhihui, 2022. "Intensive judicial oversight and corporate green innovations: Evidence from a quasi-natural experiment in China," China Economic Review, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemcl:148921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.