IDEAS home Printed from https://ideas.repec.org/p/ags/aare12/124309.html
   My bibliography  Save this paper

Sustainable diversion limits and climate change: results from an integrated economic – hydrology model of the Murray-Darling Basin

Author

Listed:
  • Kirby, Mac
  • Mainuddin, Mohammed
  • Gao, Lei
  • Ahmad, Mobin-ud-Din

Abstract

Climate change and the proposed Murray-Darling Basin Plan both result in less water for irrigation. Climate change is projected to take water from all uses including the environment, whereas the likely sustainable diversion limit in the Plan aims (amongst other things) to return water to the environment. We examine the impact on flows and the returns to irrigation of potential reductions in irrigation allocations, and the interaction with projected climate change impacts. Our analysis is based on an integrated hydrology – economics model of the Murray- Darling Basin, described in Kirby et al. (2012a). The model can quickly and easily run new climate or other scenarios, accounting for flows at key environmental assets. It uses a statistically calibrated economic model that can closely predict drought outcomes accounting for allocation, climate and price circumstances. We examined a 2,800 GL reduction to diversions, and compared it to a base case of no reductions. We modelled the flows and irrigation returns for the no reduction and reduction cases under the assumption of historical climate, a median climate change and a more severe climate change. The climate change projections were those examined in the CSIRO Murray-Darling Basin Sustainable Yields project, slightly extended for more recent years. The broad results of this analysis are that: • The reduction of water available to irrigation under the sustainable diversion limit results in a less than proportional reduction in returns to irrigation. A 25 % reduction in water available on average over 114 years is estimated to reduce the gross value of of irrigated agricultural production by about 3 % on average. This is consistent with observation of reduced water availability in the drought (Kirby et al., 2012b, Conner et al., 2012). • Future droughts projected under climate change might be more severe that those experienced to date, with an expectation of greater economic impact; • A median climate change projection removes from the overall system slightly more water than is gained for the environment under the sustainable diversion limit. Under current sharing rules, this reduction in water comes primarily from the environment. The exact impact on flows varies from valley to valley. The impact of climate change is not considered in other analyses of the Murray-Darling Basin plan. 3 • The returns to irrigation are not much affected by a median climate change, with a 2 % reduction in gross value resulting from 3 % reduction in water availability (on top of the reductions due to the diversion limit). This detail in this result depends on the exact form of water sharing rules, and rules will change in the future; we used a default assumption that the behaviour resulting from the rules will be much as it is now.

Suggested Citation

  • Kirby, Mac & Mainuddin, Mohammed & Gao, Lei & Ahmad, Mobin-ud-Din, 2012. "Sustainable diversion limits and climate change: results from an integrated economic – hydrology model of the Murray-Darling Basin," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 124309, Australian Agricultural and Resource Economics Society.
  • Handle: RePEc:ags:aare12:124309
    DOI: 10.22004/ag.econ.124309
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/124309/files/2012AC%20Gao%20CP.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.124309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kirby, Mac & Connor, Jeffery D. & Bark, Rosalind H. & Qureshi, Muhammad Ejaz & Keyworth, Scott W., 2012. "The economic impact of water reductions during the Millennium Drought in the Murray-Darling Basin," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 124490, Australian Agricultural and Resource Economics Society.
    2. Connor, Jeffery D. & Ahmad, Mobin-ud-Din & King, Darran & Banerjee, Onil & Mainuddin, Mohammed & Gao, Lei, 2012. "Murray Darling Basin Irrigation Adaptation to Drought: A Statistical Evaluation," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 124266, Australian Agricultural and Resource Economics Society.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirby, Mac & Mainuddin, Mohammed & Gao, Lei & Connor, Jeffery D. & Ahmad, Mobin-ud-Din, 2012. "Integrated, dynamic economic – hydrology model of the Murray-Darling Basin," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 124487, Australian Agricultural and Resource Economics Society.
    2. Mushtaq, Shahbaz & Cockfield, Geoff & White, Neil & Jakeman, Guy, 2014. "Modelling interactions between farm-level structural adjustment and a regional economy: A case of the Australian rice industry," Agricultural Systems, Elsevier, vol. 123(C), pages 34-42.
    3. Onil Banerjee, 2015. "Investing in recovering water for the environment in Australia's Murray-Darling Basin," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 31(4), pages 701-717, December.
    4. Connor, Jeffery D. & Ahmad, Mobin-ud-Din & King, Darran & Banerjee, Onil & Mainuddin, Mohammed & Gao, Lei, 2012. "Murray Darling Basin Irrigation Adaptation to Drought: A Statistical Evaluation," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 124266, Australian Agricultural and Resource Economics Society.
    5. Qureshi, M. Ejaz & Ahmad, Mobin-ud-Din & Whitten, Stuart M. & Kirby, Mac, 2014. "A multi-period positive mathematical programming approach for assessing economic impact of drought in the Murray–Darling Basin, Australia," Economic Modelling, Elsevier, vol. 39(C), pages 293-304.
    6. M. E. Qureshi & M. D. Ahmad & S. M. Whitten & A. Reeson & M. Kirby, 2018. "Impact of Climate Variability Including Drought on the Residual Value of Irrigation Water Across the Murray–Darling Basin, Australia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-25, January.
    7. Ejaz Qureshi, M. & Hanjra, Munir A. & Ward, John, 2013. "Impact of water scarcity in Australia on global food security in an era of climate change," Food Policy, Elsevier, vol. 38(C), pages 136-145.

    More about this item

    Keywords

    Environmental Economics and Policy; Resource /Energy Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aare12:124309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.