IDEAS home Printed from https://ideas.repec.org/p/ags/aaea21/314053.html
   My bibliography  Save this paper

Modeling Fish Price Volatility in Bangladesh Using the Conditional Autoregressive Range Model

Author

Listed:
  • Dey, Madan M.
  • Surathkal, Prasanna

Abstract

No abstract is available for this item.

Suggested Citation

  • Dey, Madan M. & Surathkal, Prasanna, 2021. "Modeling Fish Price Volatility in Bangladesh Using the Conditional Autoregressive Range Model," 2021 Annual Meeting, August 1-3, Austin, Texas 314053, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea21:314053
    DOI: 10.22004/ag.econ.314053
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/314053/files/Abstracts_21_06_15_15_17_29_94__147_26_126_211_0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.314053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    2. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-582, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    2. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    3. Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015. "Aggregate volatility expectations and threshold CAPM," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.
    4. Vladimir Tsenkov, 2009. "Financial Markets Modelling," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 87-96.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Bayraci, Selcuk & Demiralay, Sercan, 2013. "Conditional Autoregregressive Range (CARR) Based Volatility Spillover Index For the Eurozone Markets," MPRA Paper 51909, University Library of Munich, Germany.
    7. Harris, Richard D.F. & Yilmaz, Fatih, 2010. "Estimation of the conditional variance-covariance matrix of returns using the intraday range," International Journal of Forecasting, Elsevier, vol. 26(1), pages 180-194, January.
    8. Ben Sita, Bernard & Abdallah, Wissam, 2014. "Volatility links between the home and the host market for U.K. dual-listed stocks on U.S. markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 183-199.
    9. Kumar, Dilip & Maheswaran, S., 2014. "A new approach to model and forecast volatility based on extreme value of asset prices," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 128-140.
    10. Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
    11. repec:wyi:journl:002202 is not listed on IDEAS
    12. Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.
    13. Lee, O. & Shin, D.W., 2008. "Geometric ergodicity and [beta]-mixing property for a multivariate CARR model," Economics Letters, Elsevier, vol. 100(1), pages 111-114, July.
    14. Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, August.
    15. Fantazzini, Dean, 2023. "Assessing the Credit Risk of Crypto-Assets Using Daily Range Volatility Models," MPRA Paper 117141, University Library of Munich, Germany.
    16. Haase, Marco & Huss, Matthias, 2018. "Guilty speculators? Range-based conditional volatility in a cross-section of wheat futures," Journal of Commodity Markets, Elsevier, vol. 10(C), pages 29-46.
    17. Lin, Edward M.H. & Chen, Cathy W.S. & Gerlach, Richard, 2012. "Forecasting volatility with asymmetric smooth transition dynamic range models," International Journal of Forecasting, Elsevier, vol. 28(2), pages 384-399.
    18. Fabrizio Cipollini & Giampiero Gallo & Andrea Ugolini, 2016. "Median Response to Shocks: A Model for VaR Spillovers in East Asia," Econometrics Working Papers Archive 2016_01, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    19. Ahmed, Walid M.A., 2017. "The impact of foreign equity flows on market volatility during politically tranquil and turbulent times: The Egyptian experience," Research in International Business and Finance, Elsevier, vol. 40(C), pages 61-77.
    20. Tan, Shay-Kee & Chan, Jennifer So-Kuen & Ng, Kok-Haur, 2020. "On the speculative nature of cryptocurrencies: A study on Garman and Klass volatility measure," Finance Research Letters, Elsevier, vol. 32(C).
    21. Fałdziński, Marcin & Fiszeder, Piotr & Molnár, Peter, 2024. "Improving volatility forecasts: Evidence from range-based models," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).

    More about this item

    Keywords

    Marketing; International Development; Research Methods/Statistical Methods;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea21:314053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.