IDEAS home Printed from https://ideas.repec.org/p/ags/aaea15/205594.html
   My bibliography  Save this paper

Optimal regulation of carbon and co-pollutants with spatially differentiated damages

Author

Listed:
  • Crago, Christine L.
  • Stranlund, John K.

Abstract

In this paper we investigate the optimal taxation of CO2 and its co-pollutants. While CO2 is a uniformly mixed stock pollutant, important CO2 co-pollutants like SO2, PM2.5 and PM10 are flow pollutants with spatially differentiated damages. Recent proposals have called for CO2 control that accounts for its effects on emissions of its co-pollutants, which implies that optimal CO2 taxes would have a spatial component. However we demonstrate that setting a CO2 tax that varies from its marginal damage is justified only if co-pollutants are regulated inefficiently. We demonstrate that the optimal CO2 tax deviates from the CO2 marginal damage across sources depending on the source-specific co-pollutant marginal damage, the level of inefficiency in the co-pollutant regulation, and the abatement cost interaction of the two pollutants. An alternative to adjusting CO2 policy to account for the inefficient regulation of a co-pollutant is to address the inefficiency directly by modifying the regulation of the co-pollutant. Since this approach is more efficient in general, we quantify the expected reduction in social costs from this regulation relative to adjusting CO2 taxes. With a simulation of CO2 and SO2 control from the U.S. power sector, we find that setting efficient taxes for both CO2 and SO2 provides a welfare gain that is likely to be many orders of magnitude greater than the gain from adjusting CO2 taxes to account for the inefficient regulation of SO2.

Suggested Citation

  • Crago, Christine L. & Stranlund, John K., 2015. "Optimal regulation of carbon and co-pollutants with spatially differentiated damages," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205594, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea15:205594
    DOI: 10.22004/ag.econ.205594
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/205594/files/Crago%20Stranlund%20June%202015.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.205594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bollen, Johannes & van der Zwaan, Bob & Brink, Corjan & Eerens, Hans, 2009. "Local air pollution and global climate change: A combined cost-benefit analysis," Resource and Energy Economics, Elsevier, vol. 31(3), pages 161-181, August.
    2. Ambec, Stefan & Coria, Jessica, 2013. "Prices vs quantities with multiple pollutants," Journal of Environmental Economics and Management, Elsevier, vol. 66(1), pages 123-140.
    3. Ian Parry & Chandara Veung & Dirk Heine, 2015. "How Much Carbon Pricing Is In Countries’ Own Interests? The Critical Role Of Co-Benefits," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-26, November.
    4. Pizer, William A., 2002. "Combining price and quantity controls to mitigate global climate change," Journal of Public Economics, Elsevier, vol. 85(3), pages 409-434, September.
    5. Montero, Juan-Pablo, 2001. "Multipollutant Markets," RAND Journal of Economics, The RAND Corporation, vol. 32(4), pages 762-774, Winter.
    6. Woodward, Richard T., 2011. "Double-dipping in environmental markets," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 153-169, March.
    7. Burtraw, Dallas & Krupnick, Alan & Palmer, Karen & Paul, Anthony & Toman, Michael & Bloyd, Cary, 2003. "Ancillary benefits of reduced air pollution in the US from moderate greenhouse gas mitigation policies in the electricity sector," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 650-673, May.
    8. Muller, Nicholas Z., 2012. "The design of optimal climate policy with air pollution co-benefits," Resource and Energy Economics, Elsevier, vol. 34(4), pages 696-722.
    9. John K. Stranlund & Insung Son, 2019. "Prices Versus Quantities Versus Hybrids in the Presence of Co-pollutants," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 353-384, June.
    10. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    11. James Boyce & Manuel Pastor, 2013. "Clearing the air: incorporating air quality and environmental justice into climate policy," Climatic Change, Springer, vol. 120(4), pages 801-814, October.
    12. Nicholas Z. Muller & Robert Mendelsohn, 2009. "Efficient Pollution Regulation: Getting the Prices Right," American Economic Review, American Economic Association, vol. 99(5), pages 1714-1739, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geiger, Charlotte & Lehmann, Paul, 2021. "Managing the spatial externalities of renewable energy deployment: Uniform vs. differentiated regulation," UFZ Discussion Papers 1/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John K. Stranlund & Insung Son, 2019. "Prices Versus Quantities Versus Hybrids in the Presence of Co-pollutants," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 353-384, June.
    2. Reeling, Carson & Garnache, Cloé & Horan, Richard, 2018. "Efficiency gains from integrated multipollutant trading," Resource and Energy Economics, Elsevier, vol. 52(C), pages 124-136.
    3. Brunel, Claire & Johnson, Erik Paul, 2019. "Two birds, one stone? Local pollution regulation and greenhouse gas emissions," Energy Economics, Elsevier, vol. 78(C), pages 1-12.
    4. Ambec, Stefan & Coria, Jessica, 2013. "Prices vs quantities with multiple pollutants," Journal of Environmental Economics and Management, Elsevier, vol. 66(1), pages 123-140.
    5. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    6. Fabio Antoniou & Efthymia Kyriakopoulou, 2019. "On the Strategic Effect of International Permits Trading on Local Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1299-1329, November.
    7. Muller, Nicholas Z., 2012. "The design of optimal climate policy with air pollution co-benefits," Resource and Energy Economics, Elsevier, vol. 34(4), pages 696-722.
    8. James Boyce & Manuel Pastor, 2012. "Cooling the Planet, Clearing the Air: Climate Policy, Carbon Pricing, and Co-Benefits," Published Studies cooling_the_planet_sept20, Political Economy Research Institute, University of Massachusetts at Amherst.
    9. Ikefuji, M. & Magnus, J.R. & Sakamoto, H., 2010. "Climate Change, Economic Growth, and Health," Discussion Paper 2010-86, Tilburg University, Center for Economic Research.
    10. Bollen, Johannes, 2015. "The value of air pollution co-benefits of climate policies: Analysis with a global sector-trade CGE model called WorldScan," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 178-191.
    11. Guy Meunier, 2015. "Prices vs. quantities in presence of a second, unpriced, externality," Working Papers hal-01242040, HAL.
    12. Tang, Bao-Jun & Wang, Xiang-Yu & Wei, Yi-Ming, 2019. "Quantities versus prices for best social welfare in carbon reduction: A literature review," Applied Energy, Elsevier, vol. 233, pages 554-564.
    13. Hélène Ollivier, 2016. "North–South Trade and Heterogeneous Damages from Local and Global Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(2), pages 337-355, October.
    14. Don Fullerton & Daniel H. Karney, 2014. "Multiple Pollutants, Uncovered Sectors, and Suboptimal Environmental Policies," NBER Working Papers 20334, National Bureau of Economic Research, Inc.
    15. Fullerton, Don & Karney, Daniel H., 2018. "Multiple pollutants, co-benefits, and suboptimal environmental policies," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 52-71.
    16. Chae, Yeora & Park, Jeongim, 2011. "Quantifying costs and benefits of integrated environmental strategies of air quality management and greenhouse gas reduction in the Seoul Metropolitan Area," Energy Policy, Elsevier, vol. 39(9), pages 5296-5308, September.
    17. Elisabetta Cornago & Renaud Foucart, 2014. "Instrument Choice and Cost Uncertainty in the Electricity Market," Working Papers ECARES ECARES 2014-13, ULB -- Universite Libre de Bruxelles.
    18. Carson Reeling & Richard D. Horan & Cloé Garnache, 2020. "When the Levee Breaks: Can Multi‐Pollutant Markets Break the Dam on Point–Nonpoint Market Participation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 625-640, March.
    19. Aurélie Slechten & Vincenzo Verardi, 2016. "Measuring the Impact of Multiple Air Pollution Agreements on Global CO2 Emissions," Land Economics, University of Wisconsin Press, vol. 92(3), pages 534-554.
    20. Bollen, Johannes & Brink, Corjan, 2014. "Air pollution policy in Europe: Quantifying the interaction with greenhouse gases and climate change policies," Energy Economics, Elsevier, vol. 46(C), pages 202-215.

    More about this item

    Keywords

    Environmental Economics and Policy;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea15:205594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.