IDEAS home Printed from https://ideas.repec.org/p/aah/create/2010-32.html
   My bibliography  Save this paper

Simple simulation of diffusion bridges with application to likelihood inference for diffusions

Author

Listed:
  • Mogens Bladt

    (Universidad Nacional Autónoma de México)

  • Michael Sørensen

    (University of Copenhagen and CREATES)

Abstract

With a view to likelihood inference for discretely observed diffusion type models, we propose a simple method of simulating approximations to diffusion bridges. The method is applicable to all one-dimensional diffusion processes and has the advantage that simple simulation methods like the Euler scheme can be applied to bridge simulation. Another advantage over other bridge simulation methods is that the proposed method works well when the diffusion bridge is defined in a long interval because the computational complexity of the method is linear in the length of the interval. In a simulation study we investigate the accuracy and efficiency of the new method and compare it to exact simulation methods. In the study the method provides a very good approximation to the distribution of a diffusion bridge for bridges that are likely to occur in applications to likelihood inference. To illustrate the usefulness of the new method, we present an EM-algorithm for a discretely observed diffusion process. We demonstrate how this estimation method simplifies for exponential families of diffusions and very briefly consider Bayesian inference.

Suggested Citation

  • Mogens Bladt & Michael Sørensen, 2010. "Simple simulation of diffusion bridges with application to likelihood inference for diffusions," CREATES Research Papers 2010-32, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2010-32
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/10/rp10_32.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    2. Dennis Kristensen, 2007. "Nonparametric Estimation and Misspecification Testing of Diffusion Models," CREATES Research Papers 2007-01, Department of Economics and Business Economics, Aarhus University.
    3. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    4. Aït-Sahalia, Yacine & Fan, Jianqing & Peng, Heng, 2009. "Nonparametric Transition-Based Tests for Jump Diffusions," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1102-1116.
    5. Mark Trede & Bernd Wilfling, 2007. "Estimating exchange rate dynamics with diffusion processes: an application to Greek EMU data," Empirical Economics, Springer, vol. 33(1), pages 23-39, July.
    6. Markussen, Bo, 2009. "Laplace approximation of transition densities posed as Brownian expectations," Stochastic Processes and their Applications, Elsevier, vol. 119(1), pages 208-231, January.
    7. Fernandes, Marcelo, 2006. "Financial crashes as endogenous jumps: estimation, testing and forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 30(1), pages 111-141, January.
    8. Ben Tims & Ronald Mahieu, 2006. "A Range-Based Multivariate Stochastic Volatility Model for Exchange Rates," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 409-424.
    9. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    10. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    11. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    12. Song, Zhaogang, 2011. "A martingale approach for testing diffusion models based on infinitesimal operator," Journal of Econometrics, Elsevier, vol. 162(2), pages 189-212, June.
    13. Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
    14. Corradi, Valentina & Swanson, Norman R., 2005. "Bootstrap specification tests for diffusion processes," Journal of Econometrics, Elsevier, vol. 124(1), pages 117-148, January.
    15. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.
    16. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    17. Chen, Bin & Hong, Yongmiao, 2011. "Generalized spectral testing for multivariate continuous-time models," Journal of Econometrics, Elsevier, vol. 164(2), pages 268-293, October.
    18. Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
    19. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    20. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Teaching an old dog new tricks: Improved estimation of the parameters of SDEs by numerical solution of the Fokker-Planck equation," Stan Hurn Discussion Papers 2006-01, School of Economics and Finance, Queensland University of Technology.

    More about this item

    Keywords

    Bayesian inference; diffusion bridge; discretely sampled diffusions; EM-algorithm; Euler scheme; likelihood inference; time-reversion;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2010-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.