IDEAS home Printed from https://ideas.repec.org/h/zbw/hiclch/249618.html
   My bibliography  Save this book chapter

AI-based recognition of dangerous goods labels and metric package features

In: Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 31

Author

Listed:
  • Brylka, Robert
  • Bierwirth, Benjamin
  • Schwanecke, Ulrich

Abstract

Purpose: Dangerous goods shipments require special labeling, which has to be checked manually every time a shipment is handed over in the supply chain. We describe an AI-based detection methodology to automate the recognition of dangerous goods labels and other shipment features (such as single piece volume detection). Methodology: We use five industry RGB cameras and three AZURE RGBD cameras to generate images from shipments passing through a gate. The images are processed based on the YOLO detector to identify and separate dangerous goods labels and barcodes. We trained YOLO for our particular problem with about 1.000 manually labeled and 50.000 artificial generated images. Findings: While dangerous goods labels detection was successfully validated in a laboratory environment and a warehouse, volume detection for single pieces consolidated on a pallet could be conceptualized. The system shows a high detection rate combined with fast processing, where the addition of computer-generated training images significantly improves the recognition rate for complex backgrounds. Originality: Parallel detection of multiple package features (volume, barcode, dangerous goods labels) of multiple pieces consolidated on a pallet is not available yet. Our solution processes a shipment faster and more accurately than existing single-piece solutions without restrictions to the material flow.

Suggested Citation

  • Brylka, Robert & Bierwirth, Benjamin & Schwanecke, Ulrich, 2021. "AI-based recognition of dangerous goods labels and metric package features," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 245-272, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  • Handle: RePEc:zbw:hiclch:249618
    DOI: 10.15480/882.3959
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/249618/1/hicl-2021-31-245.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15480/882.3959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Artificial Intelligence; Blockchain;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hiclch:249618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://hicl.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.