IDEAS home Printed from https://ideas.repec.org/h/zbw/hiclch/209370.html
   My bibliography  Save this book chapter

Robot-human-learning for robotic picking processes

In: Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 27

Author

Listed:
  • Rieder, Mathias
  • Verbeet, Richard

Abstract

Purpose: This research paper aims to create an environment which enables robots to learn from humans by algorithms of Computer Vision and Machine Learning for object detection and gripping. The proposed concept transforms manual picking to highly automated picking performed by robots. Methodology: After defining requirements for a robotic picking system, a process model is proposed. This model defines how to extend traditional manual picking and which human-robot-interfaces are necessary to enable learning from humans to improve the performance of robots' object detection and gripping. Findings: The proposed concept needs a pool of images to train an initial setup of a convolutional neural network by the YOLO-Algorithm. Therefore, a station with two cameras and a flexible positioning system for image creation is presented by which the necessary number of images can be generated with little effort. Originality: A digital representation of an object is created based on the generated images of this station. The original idea is a feedback loop including human workers after a not successful object detection or gripping which enables robots in service to extend their ability to recognize and pick objects.

Suggested Citation

  • Rieder, Mathias & Verbeet, Richard, 2019. "Robot-human-learning for robotic picking processes," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg Int, volume 27, pages 87-114, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  • Handle: RePEc:zbw:hiclch:209370
    DOI: 10.15480/882.2466
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/209370/1/hicl-2019-27-087.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15480/882.2466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feldt, Julia & Kontny, Henning & Niemietz, Frank, 2020. "How disruptive start-ups change the world of warehouse logistics," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Data Science and Innovation in Supply Chain Management: How Data Transforms the Value Chain. Proceedings of the Hamburg International Conference of Lo, volume 29, pages 3-24, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    2. Rieder, Mathias & Verbeet, Richard, 2020. "Realization and validation of a collaborative automated picking system," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Data Science and Innovation in Supply Chain Management: How Data Transforms the Value Chain. Proceedings of the Hamburg International Conference of Lo, volume 29, pages 521-558, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hiclch:209370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://hicl.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.