IDEAS home Printed from https://ideas.repec.org/h/zbw/hiclch/209275.html
   My bibliography  Save this book chapter

Reverse Channel Design: Profitability vs. Environmental Benefits

In: Sustainability in Logistics and Supply Chain Management: New Designs and Strategies. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 21

Author

Listed:
  • Wang, Lan
  • Cai, Gangshu
  • Tsay, Andy
  • Vaharia, Asoo

Abstract

Environmental issues are a growing priority in supply chain management, which has heightened the interest in remanufacturing. A key attribute of a remanufacturing strategy is the division of labor in the reverse channel, especially whether the remanufacturing should be performed in-house or outsourced to a third party. We investigate this decision for a retailer who accepts returns of a remanufacturable product. Our formulation considers the relative cost-effectiveness of the two approaches, uncertainty in the input quality of the collected/returned used products, consumer willingness- to-pay for remanufactured product, and the extent to which the remanufactured product cannibalizes demand for new product. Our analysis predicts the retailer's propensity to remanufacture, which provides a metric of the environmental impact of each strategy.

Suggested Citation

  • Wang, Lan & Cai, Gangshu & Tsay, Andy & Vaharia, Asoo, 2015. "Reverse Channel Design: Profitability vs. Environmental Benefits," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Sustainability in Logistics and Supply Chain Management: New Designs and Strategies. Proceedings of the Hamburg International Conference of Logistics , volume 21, pages 153-181, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  • Handle: RePEc:zbw:hiclch:209275
    DOI: 10.15480/882.1263
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/209275/1/hicl-2015-21-153.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15480/882.1263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tsay, Andy A., 2014. "Designing and Controlling the Outsourced Supply Chain," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 7(1-2), pages 1-160, July.
    2. V. Daniel R. Guide & Luk N. Van Wassenhove, 2009. "OR FORUM---The Evolution of Closed-Loop Supply Chain Research," Operations Research, INFORMS, vol. 57(1), pages 10-18, February.
    3. Tang, Christopher S. & Zhou, Sean, 2012. "Research advances in environmentally and socially sustainable operations," European Journal of Operational Research, Elsevier, vol. 223(3), pages 585-594.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Tsan-Ming & Chow, Pui-Sze & Lee, Chang Hwan & Shen, Bin, 2018. "Used intimate apparel collection programs: A game-theoretic analytical study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 44-62.
    2. Jyoti Dhingra Darbari & Devika Kannan & Vernika Agarwal & P. C. Jha, 2019. "Fuzzy criteria programming approach for optimising the TBL performance of closed loop supply chain network design problem," Annals of Operations Research, Springer, vol. 273(1), pages 693-738, February.
    3. Xue, Yu & Caliskan-Demirag, Ozgun & Chen, Youhua (Frank) & Yu, Yugang, 2018. "Supporting customers to sell used goods: Profitability and environmental implications," International Journal of Production Economics, Elsevier, vol. 206(C), pages 220-232.
    4. Mota, Bruna & Gomes, Maria Isabel & Carvalho, Ana & Barbosa-Povoa, Ana Paula, 2018. "Sustainable supply chains: An integrated modeling approach under uncertainty," Omega, Elsevier, vol. 77(C), pages 32-57.
    5. Chen, Jen-Ming & Hsu, Yu-Ting, 2017. "Revenue management for durable goods using trade-ins with certified pre-owned options," International Journal of Production Economics, Elsevier, vol. 186(C), pages 55-70.
    6. Liu, Wenjie & Liu, Wei & Shen, Ningning & Xu, Zhitao & Xie, Naiming & Chen, Jian & Zhou, Huiyu, 2022. "Pricing and collection decisions of a closed-loop supply chain with fuzzy demand," International Journal of Production Economics, Elsevier, vol. 245(C).
    7. Patricia van Loon & Luk N. Van Wassenhove & Ales Mihelic, 2022. "Designing a circular business strategy: 7 years of evolution at a large washing machine manufacturer," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1030-1041, March.
    8. Matthias Kalverkamp & Alexandra Pehlken & Thorsten Wuest, 2017. "Cascade Use and the Management of Product Lifecycles," Sustainability, MDPI, vol. 9(9), pages 1-23, August.
    9. Mahdi Mahmoudzadeh, 2020. "On the Non‐Equivalence of Trade‐ins and Upgrades in the Presence of Framing Effect: Experimental Evidence and Implications for Theory," Production and Operations Management, Production and Operations Management Society, vol. 29(2), pages 330-352, February.
    10. Hong, Zhaofu & Dai, Wei & Luh, Hsing & Yang, Chenchen, 2018. "Optimal configuration of a green product supply chain with guaranteed service time and emission constraints," European Journal of Operational Research, Elsevier, vol. 266(2), pages 663-677.
    11. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    12. Wanke, Peter Fernandes & Chiappetta Jabbour, Charbel José & Moreira Antunes, Jorge Junio & Lopes de Sousa Jabbour, Ana Beatriz & Roubaud, David & Sobreiro, Vinicius Amorim & Santibanez Gonzalez‬, Erne, 2021. "An original information entropy-based quantitative evaluation model for low-carbon operations in an emerging market," International Journal of Production Economics, Elsevier, vol. 234(C).
    13. Wang, Moran & Guo, Xiaolong & Wang, Shouyang, 2022. "Financial hedging in two-stage sustainable commodity supply chains," European Journal of Operational Research, Elsevier, vol. 303(2), pages 803-818.
    14. Bowon Kim & Jeong Eun Sim, 2016. "Supply Chain Coordination and Consumer Awareness for Pollution Reduction," Sustainability, MDPI, vol. 8(4), pages 1-20, April.
    15. Brandenburg, Marcus & Govindan, Kannan & Sarkis, Joseph & Seuring, Stefan, 2014. "Quantitative models for sustainable supply chain management: Developments and directions," European Journal of Operational Research, Elsevier, vol. 233(2), pages 299-312.
    16. Yanting Huang & Zongjun Wang, 2017. "Dual-Recycling Channel Decision in a Closed-Loop Supply Chain with Cost Disruptions," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
    17. Tsiliyannis, Christos Aristeides, 2015. "Sustainability by cyclic manufacturing: Assessment of resource preservation under uncertain growth and returns," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 155-170.
    18. Rika Ampuh Hadiguna, 2012. "Decision support framework for risk assessment of sustainable supply chain," International Journal of Logistics Economics and Globalisation, Inderscience Enterprises Ltd, vol. 4(1/2), pages 35-54.
    19. Morris A. Cohen & Shiliang Cui & Ricardo Ernst & Arnd Huchzermeier & Panos Kouvelis & Hau L. Lee & Hirofumi Matsuo & Marc Steuber & Andy A. Tsay, 2018. "OM Forum—Benchmarking Global Production Sourcing Decisions: Where and Why Firms Offshore and Reshore," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 389-402, July.
    20. Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2016. "Closed-loop supply chains: What reverse logistics factors influence performance?," International Journal of Production Economics, Elsevier, vol. 175(C), pages 35-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hiclch:209275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://hicl.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.