IDEAS home Printed from https://ideas.repec.org/h/wsi/wschap/9789811259142_0004.html
   My bibliography  Save this book chapter

Probability-Free Models in Option Pricing: Statistically Indistinguishable Dynamics and Historical vs Implied Volatility

In: Options — 45 years since the Publication of the Black–Scholes–Merton Model The Gershon Fintech Center Conference

Author

Listed:
  • D. Brigo

Abstract

We investigate whether it is possible to formulate option pricing and hedging models without using probability. We present a model that is consistent with two notions of volatility: a historical volatility consistent with statistical analysis, and an implied volatility consistent with options priced with the model. The latter will be also the quadratic variation of the model, a pathwise property. This first result, originally presented in [10,11], is then connected with the recent work of Armstrong et al. [1,2], where using rough paths theory it is shown that implied volatility is associated with a purely pathwise lift of the stock dynamics involving no probability and no semimartingale theory in particular, leading to option models without probability. Finally, an intermediate result by Bender et al. [5] is recalled. Using semimartingale theory, Bender et al. showed that one could obtain option prices based only on the semimartingale quadratic variation of the model, a pathwise property, and highlighted the difference between historical and implied volatility. All three works confirm the idea that while historical volatility is a statistical quantity, implied volatility is a pathwise one. This leads to a 20 years mini-anniversary of pathwise pricing through 1998, 2008 and 2018, which is rather fitting for a talk presented at the conference for the 45 years of the Black, Scholes and Merton (BSM) option pricing paradigm.

Suggested Citation

  • D. Brigo, 2023. "Probability-Free Models in Option Pricing: Statistically Indistinguishable Dynamics and Historical vs Implied Volatility," World Scientific Book Chapters, in: David Gershon & Alexander Lipton & Mathieu Rosenbaum & Zvi Wiener (ed.), Options — 45 years since the Publication of the Black–Scholes–Merton Model The Gershon Fintech Center Conference, chapter 4, pages 47-61, World Scientific Publishing Co. Pte. Ltd..
  • Handle: RePEc:wsi:wschap:9789811259142_0004
    as

    Download full text from publisher

    File URL: https://www.worldscientific.com/doi/pdf/10.1142/9789811259142_0004
    Download Restriction: Ebook Access is available upon purchase.

    File URL: https://www.worldscientific.com/doi/abs/10.1142/9789811259142_0004
    Download Restriction: Ebook Access is available upon purchase.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    2. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    6. Brigo, Damiano, 2000. "On SDEs with marginal laws evolving in finite-dimensional exponential families," Statistics & Probability Letters, Elsevier, vol. 49(2), pages 127-134, August.
    7. Damiano Brigo & Fabio Mercurio, 2000. "Option pricing impact of alternative continuous-time dynamics for discretely-observed stock prices," Finance and Stochastics, Springer, vol. 4(2), pages 147-159.
    8. Christian Bender & Tommi Sottinen & Esko Valkeila, 2008. "Pricing by hedging and no-arbitrage beyond semimartingales," Finance and Stochastics, Springer, vol. 12(4), pages 441-468, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Armstrong & Claudio Bellani & Damiano Brigo & Thomas Cass, 2021. "Option pricing models without probability: a rough paths approach," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1494-1521, October.
    2. Marcelo F. Perillo, 2021. "Valuación de Títulos de Deuda Indexados al Comportamiento de un Índice Accionario: Un Modelo sin Riesgo de Crédito," CEMA Working Papers: Serie Documentos de Trabajo. 784, Universidad del CEMA.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    4. Timothy Johnson, 2015. "Reciprocity as a Foundation of Financial Economics," Journal of Business Ethics, Springer, vol. 131(1), pages 43-67, September.
    5. Jamshidian, Farshid, 2008. "Numeraire Invariance and application to Option Pricing and Hedging," MPRA Paper 7167, University Library of Munich, Germany.
    6. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    7. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    8. Robert Elliott & Tak Siu, 2015. "Asset Pricing Using Trading Volumes in a Hidden Regime-Switching Environment," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(2), pages 133-149, May.
    9. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    10. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    11. repec:uts:finphd:40 is not listed on IDEAS
    12. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    13. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    14. A Craig Burnside & Jeremy J Graveline, 2020. "On the Asset Market View of Exchange Rates," The Review of Financial Studies, Society for Financial Studies, vol. 33(1), pages 239-260.
    15. Hosam Ki & Byungwook Choi & Kook‐Hyun Chang & Miyoung Lee, 2005. "Option pricing under extended normal distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 845-871, September.
    16. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    17. W. Schachermayer, 1994. "Martingale Measures For Discrete‐Time Processes With Infinite Horizon," Mathematical Finance, Wiley Blackwell, vol. 4(1), pages 25-55, January.
    18. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    19. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    20. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.
    21. Jos'e Manuel Corcuera, 2021. "The Golden Age of the Mathematical Finance," Papers 2102.06693, arXiv.org, revised Mar 2021.

    More about this item

    Keywords

    Options; Call; Put; Stock; Equity; Bond; Debt; Dividend; Investment; Diversification; Volatility; Black–Scholes; Merton Model; Stochastic; Swap; Commodity; Index; Contingent Claims; Exotic Option;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G1 - Financial Economics - - General Financial Markets
    • C - Mathematical and Quantitative Methods
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:wschap:9789811259142_0004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/page/worldscibooks .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.