IDEAS home Printed from https://ideas.repec.org/h/wsi/wschap/9789811202391_0052.html
   My bibliography  Save this book chapter

The Jump Behavior of a Foreign Exchange Market: Analysis of the Thai Baht

In: HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING

Author

Listed:
  • Jow-Ran Chang
  • Mao-Wei Hung
  • Cheng Few Lee
  • Hsin-Min Lu

Abstract

We study the heteroskedasticity and jump behavior of the Thai baht using models of the square root stochastic volatility with or without jumps. The Bayesian factor is used to evaluate the explanatory power of competing models. The results suggest that in our sample, the square root stochastic volatility model with independent jumps in the observation and state equations (SVIJ) has the best explanatory power for the 1996 Asian financial crisis. Using the estimation results of the SVIJ model, we are able to link the major events of the Asian financial crisis to jump behavior in either volatility or observation.

Suggested Citation

  • Jow-Ran Chang & Mao-Wei Hung & Cheng Few Lee & Hsin-Min Lu, 2020. "The Jump Behavior of a Foreign Exchange Market: Analysis of the Thai Baht," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 52, pages 1943-1968, World Scientific Publishing Co. Pte. Ltd..
  • Handle: RePEc:wsi:wschap:9789811202391_0052
    as

    Download full text from publisher

    File URL: https://www.worldscientific.com/doi/pdf/10.1142/9789811202391_0052
    Download Restriction: Ebook Access is available upon purchase.

    File URL: https://www.worldscientific.com/doi/abs/10.1142/9789811202391_0052
    Download Restriction: Ebook Access is available upon purchase.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Eraker, Bjorn, 2002. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Working Papers 02-23, Duke University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Few Lee, 2020. "Financial econometrics, mathematics, statistics, and financial technology: an overall view," Review of Quantitative Finance and Accounting, Springer, vol. 54(4), pages 1529-1578, May.
    2. Sharif Mozumder & Ghulam Sorwar & Kevin Dowd, 2013. "Option pricing under non-normality: a comparative analysis," Review of Quantitative Finance and Accounting, Springer, vol. 40(2), pages 273-292, February.
    3. Ahmed Hachicha & Fatma Hachicha & Afif Masmoudi, 2012. "A comparative study of two models SV with MCMC algorithm," Review of Quantitative Finance and Accounting, Springer, vol. 38(4), pages 479-493, May.
    4. Konstantinos Gkillas & Rangan Gupta & Mark E. Wohar, 2020. "Oil shocks and volatility jumps," Review of Quantitative Finance and Accounting, Springer, vol. 54(1), pages 247-272, January.
    5. Chih-Chen Hsu & An-Sing Chen & Shih-Kuei Lin & Ting-Fu Chen, 2017. "The affine styled-facts price dynamics for the natural gas: evidence from daily returns and option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(3), pages 819-848, April.
    6. Cheng-Few Lee & Oleg Sokolinskiy, 2015. "R-2GAM stochastic volatility model: flexibility and calibration," Review of Quantitative Finance and Accounting, Springer, vol. 45(3), pages 463-483, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Zerilli, 2005. "Option pricing and spikes in volatility: theoretical and empirical analysis," Money Macro and Finance (MMF) Research Group Conference 2005 76, Money Macro and Finance Research Group.
    2. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.

    More about this item

    Keywords

    Financial Econometrics; Financial Mathematics; Financial Statistics; Financial Technology; Machine Learning; Covariance Regression; Cluster Effect; Option Bound; Dynamic Capital Budgeting; Big Data;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:wschap:9789811202391_0052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/page/worldscibooks .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.