IDEAS home Printed from https://ideas.repec.org/h/wsi/wschap/9789811202391_0050.html
   My bibliography  Save this book chapter

Empirical Studies of Structural Credit Risk Models and the Application in Default Prediction: Review and New Evidence

In: HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING

Author

Listed:
  • Han-Hsing Lee
  • Ren-Raw Chen
  • Cheng Few Lee

Abstract

This chapter first reviews empirical evidence and estimation methods of structural credit risk models. Next, an empirical investigation of the performance of default prediction under the down-and-out barrier option framework is provided. In the literature review, a brief overview of the structural credit risk models is provided. Empirical investigations in extant literature papers are described in some detail, and their results are summarized in terms of subject and estimation method adopted in each paper. Current estimation methods and their drawbacks are discussed in detail. In our empirical investigation, we adopt the Maximum Likelihood Estimation method proposed by Duan (1994). This method has been shown by Ericsson and Reneby (2005) through simulation experiments to be superior to the volatility restriction approach commonly adopted in the literature. Our empirical results surprisingly show that the simple Merton model outperforms the Brockman and Turtle (2003) model in default prediction. The inferior performance of the Brockman and Turtle model may be the result of its unreasonable assumption of the flat barrier.

Suggested Citation

  • Han-Hsing Lee & Ren-Raw Chen & Cheng Few Lee, 2020. "Empirical Studies of Structural Credit Risk Models and the Application in Default Prediction: Review and New Evidence," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 50, pages 1845-1901, World Scientific Publishing Co. Pte. Ltd..
  • Handle: RePEc:wsi:wschap:9789811202391_0050
    as

    Download full text from publisher

    File URL: https://www.worldscientific.com/doi/pdf/10.1142/9789811202391_0050
    Download Restriction: Ebook Access is available upon purchase.

    File URL: https://www.worldscientific.com/doi/abs/10.1142/9789811202391_0050
    Download Restriction: Ebook Access is available upon purchase.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bruche, Max, 2005. "Estimating structural bond pricing models via simulated maximum likelihood," LSE Research Online Documents on Economics 24647, London School of Economics and Political Science, LSE Library.
    2. Delianedis, Gordon & Geske, Robert, 2001. "The Components of Corporate Credit Spreads: Default, Recovery, Tax, Jumps, Liquidity, and Market Factors," University of California at Los Angeles, Anderson Graduate School of Management qt32x284q3, Anderson Graduate School of Management, UCLA.
    3. Saa-Requejo, Jesus & Santa-Clara, Pedro, 1997. "Bond Pricing with Default Risk," University of California at Los Angeles, Anderson Graduate School of Management qt3w71g2ch, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han-Hsing Lee & Kuanyu Shih & Kehluh Wang, 2016. "Measuring sovereign credit risk using a structural model approach," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1097-1128, November.
    2. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maclachlan, Iain C, 2007. "An empirical study of corporate bond pricing with unobserved capital structure dynamics," MPRA Paper 28416, University Library of Munich, Germany.
    2. Abel Elizalde, 2006. "Credit Risk Models II: Structural Models," Working Papers wp2006_0606, CEMFI.
    3. Ericsson, Jan & Reneby, Joel, 2003. "Valuing Corporate Liabilities," SIFR Research Report Series 15, Institute for Financial Research.
    4. Forte, Santiago & Lovreta, Lidija, 2012. "Endogenizing exogenous default barrier models: The MM algorithm," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1639-1652.
    5. Correia, Ricardo & Población, Javier, 2015. "A structural model with Explicit Distress," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 112-130.
    6. Kanak Patel & Ricardo Pereira, 2007. "Expected Default Probabilities in Structural Models: Empirical Evidence," The Journal of Real Estate Finance and Economics, Springer, vol. 34(1), pages 107-133, January.
    7. Kucuk, Ugur N., 2010. "Non-default Component of Sovereign Emerging Market Yield Spreads and its Determinants: Evidence from Credit Default Swap Market," MPRA Paper 27428, University Library of Munich, Germany.
    8. SHAH, Syed Muhammad Noaman Ahmed & KEBEWAR, mazen, 2013. "US Corporate Bond Yield Spread: A default risk debate," MPRA Paper 44887, University Library of Munich, Germany.
    9. Donald P. Morgan & Kevin J. Stiroh, 2005. "Too big to fail after all these years," Staff Reports 220, Federal Reserve Bank of New York.
    10. Hugues Pirotte, 1999. "Implementing a Structural Valuation Model of Swap Credit-Sensitive Rates," Working Papers CEB 99-001.RS, ULB -- Universite Libre de Bruxelles.
    11. Maalaoui Chun, Olfa & Dionne, Georges & François, Pascal, 2014. "Credit spread changes within switching regimes," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 41-55.
    12. Paul Hamalainen, 2006. "Market discipline and regulatory authority oversight of banks: Complements not substitutes," The Service Industries Journal, Taylor & Francis Journals, vol. 26(1), pages 97-117, January.
    13. Kyriakos Georgiou & Athanasios N. Yannacopoulos, 2023. "Probability of Default modelling with L\'evy-driven Ornstein-Uhlenbeck processes and applications in credit risk under the IFRS 9," Papers 2309.12384, arXiv.org.
    14. Gregor Dorfleitner & Paul Schneider & Tanja Veža, 2011. "Flexing the default barrier," Quantitative Finance, Taylor & Francis Journals, vol. 11(12), pages 1729-1743.
    15. Maurizio Luisi & Jeffery D. Amato, 2006. "Macro factors in the term structure of credit spreads," BIS Working Papers 203, Bank for International Settlements.
    16. Nakashima, Kiyotaka & Saito, Makoto, 2009. "Credit spreads on corporate bonds and the macroeconomy in Japan," Journal of the Japanese and International Economies, Elsevier, vol. 23(3), pages 309-331, September.
    17. Gatfaoui Hayette, 2004. "Idiosyncratic Risk, Systematic Risk and Stochastic Volatility: An Implementation of Merton’s Credit Risk Valuation," Finance 0404004, University Library of Munich, Germany.
    18. Maciej Firla-Cuchra, 2005. "Explaining Launch Spreads on Structured Bonds," Economics Series Working Papers 230, University of Oxford, Department of Economics.
    19. Annaert, Jan & De Ceuster, Marc & Van Roy, Patrick & Vespro, Cristina, 2013. "What determines Euro area bank CDS spreads?," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 444-461.
    20. Luca Benzoni & Robert S. Goldstein, 2015. "Estimating the Tax and Credit-Event Risk Components of Credit Spreads," Working Paper Series WP-2017-17, Federal Reserve Bank of Chicago.

    More about this item

    Keywords

    Financial Econometrics; Financial Mathematics; Financial Statistics; Financial Technology; Machine Learning; Covariance Regression; Cluster Effect; Option Bound; Dynamic Capital Budgeting; Big Data;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:wschap:9789811202391_0050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/page/worldscibooks .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.