IDEAS home Printed from https://ideas.repec.org/h/wsi/wschap/9789811202391_0014.html
   My bibliography  Save this book chapter

A Heteroskedastic Black–Litterman Portfolio Optimization Model with Views Derived from a Predictive Regression

In: HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING

Author

Listed:
  • Wei-Hung Lin
  • Huei-Wen Teng
  • Chi-Chun Yang

Abstract

The modern portfolio theory in Markowitz (1952) is a cornerstone for investment management, but its implementations are challenging in that the optimal portfolio weight is extremely sensitive to the estimation for the mean and covariance of the asset returns. As a sophisticate modification, the Black–Litterman portfolio model allows the optimal portfolio’s weight to rely on a combination of the implied market equilibrium returns and investors’ views (Black and Litterman, 1991). However, the performance of a Black–Litterman model is closely related to investors’ views and the estimated covariance matrix. To overcome these problems, we first propose a predictive regression to form investors’ views, where asset returns are regressed against their lagged values and the market return. Second, motivated by stylized features of volatility clustering, heavy-tailed distribution, and leverage effects, we estimate the covariance of asset returns via heteroscedastic models. Empirical analysis using five industry indexes in the Taiwan stock market shows that the proposed portfolio outperforms existing ones in terms of cumulative returns.

Suggested Citation

  • Wei-Hung Lin & Huei-Wen Teng & Chi-Chun Yang, 2020. "A Heteroskedastic Black–Litterman Portfolio Optimization Model with Views Derived from a Predictive Regression," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 14, pages 563-581, World Scientific Publishing Co. Pte. Ltd..
  • Handle: RePEc:wsi:wschap:9789811202391_0014
    as

    Download full text from publisher

    File URL: https://www.worldscientific.com/doi/pdf/10.1142/9789811202391_0014
    Download Restriction: Ebook Access is available upon purchase.

    File URL: https://www.worldscientific.com/doi/abs/10.1142/9789811202391_0014
    Download Restriction: Ebook Access is available upon purchase.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqin Sun & Yungao Wu & Gejirifu De, 2023. "A Novel Black-Litterman Model with Time-Varying Covariance for Optimal Asset Allocation of Pension Funds," Mathematics, MDPI, vol. 11(6), pages 1-21, March.

    More about this item

    Keywords

    Financial Econometrics; Financial Mathematics; Financial Statistics; Financial Technology; Machine Learning; Covariance Regression; Cluster Effect; Option Bound; Dynamic Capital Budgeting; Big Data;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:wschap:9789811202391_0014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/page/worldscibooks .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.