IDEAS home Printed from https://ideas.repec.org/h/wsi/wschap/9781800611757_0011.html
   My bibliography  Save this book chapter

Clustering Eurozone Countries According to Employee Contributions Before and After COVID-19

In: MODELING AND ADVANCED TECHNIQUES IN MODERN ECONOMICS

Author

Listed:
  • Hüseyin Ünözkan
  • Nihan Potas
  • Mehmet Yılmaz

Abstract

Many researchers have tried to analyze economic situations with cluster analyses. In this study, we try to analyze the effects of coronavirus disease 2019 (COVID-19) on 29 Eurozone countries by changes of the clusters. The dataset contains species from the European Union formal data group, and they are gross domestic product (GDP) at current prices per hour worked, average annual hours worked per person employed, GDP at 2015 reference levels adjusted for the impact of terms of trade per person employed, real compensation per employee (deflator GDP: total economy) and real unit labor costs (total economy: ratio of compensation per employee to nominal GDP per person employed). We investigate the economic indicators of two different years independently. The cluster analysis for 2019 gives us two clusters for the 29 Eurozone countries. On the other hand, the cluster analysis with the same data group for 2020 gives three clusters. Some countries dissociate positively, while others are affected by COVID-19 negatively. The study shows that COVID-19 affected Eurozone countries in terms of certain European Union employee data group.

Suggested Citation

  • Hüseyin Ünözkan & Nihan Potas & Mehmet Yılmaz, 2022. "Clustering Eurozone Countries According to Employee Contributions Before and After COVID-19," World Scientific Book Chapters, in: Çağdaş Hakan Aladağ & Nihan Potas (ed.), MODELING AND ADVANCED TECHNIQUES IN MODERN ECONOMICS, chapter 11, pages 221-232, World Scientific Publishing Co. Pte. Ltd..
  • Handle: RePEc:wsi:wschap:9781800611757_0011
    as

    Download full text from publisher

    File URL: https://www.worldscientific.com/doi/pdf/10.1142/9781800611757_0011
    Download Restriction: Ebook Access is available upon purchase.

    File URL: https://www.worldscientific.com/doi/abs/10.1142/9781800611757_0011
    Download Restriction: Ebook Access is available upon purchase.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Harmonic Regression; Periodograms; Consumer Price Index; Food Inflation; Turkey; Gaussian Distribution; Europe Union; GDP; Panel Data; Spatial Regression; Measurement Errors; Nonlinear Time Series; Chaotic Time Series; Weibull Distribution; Location Parameters; Fiducial Approach; Hypothesis Testing; Green Swan; Financial Stability; Annex II Countries; Financial Time Series; Kernels; Stock Index; Machine Learning; Statistical Learning; Optimization; WSAR Algorithm; Deep Neural Networks; Phyton; Parameter Estimation; COVID-19; Clustering Analyses; Artificial Neural Networks; Performance Criteria; Time Series Forecasting; Statistical Inference;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:wschap:9781800611757_0011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/page/worldscibooks .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.