IDEAS home Printed from https://ideas.repec.org/h/tkp/mklp16/503-511.html
   My bibliography  Save this book chapter

Knowledge Extraction and Advanced Analyses Through Inverse Modelling Using Artificial Neural Networks

Author

Listed:
  • Wolfram C Rinke

    (Fachhochschule Burgenland GmbH, Austria)

  • Albert F Stöckl

    (Fachhochschule Krems, Austria)

  • Andreas B Eisingerich

    (Imperial College UK, UK)

Abstract

Using artificial neural networks (ANN) to model an observed process is state of the art in engineering and is receiving more and more attention in social or marketing research. As shown in previous publications static data analytics, like an ANN based dependency matrix (DM), creates a better understanding of the relationship between dependant and independent variables of the observed system. To gain a better understanding of the behaviour and dynamics of an observed system a further step has been taken. . This is accomplished by transforming the ANN-DM into its open form equivalent. This is represented by several ANN models, one for each observed model parameter. An algorithm, which was published by the author, can be used for this transformation. The final result makes it possible to study the dynamic relationships between all parameters, including simulation and conclusions on its inverted model behaviour. The author will show based on an example from tourism marketing, how this inverse modelling approach can be applied and what new knowledge can be extracted from the achieved simulation results. The conclusion is that ANN based algorithms makes it possible to model an observed system in a static but also in a dynamic way. Inverting the model generates a deeper insight view and additional knowledge about an observed system. The resulting applications range from supporting strategic decisions to predictive control or model based simulation.

Suggested Citation

  • Wolfram C Rinke & Albert F Stöckl & Andreas B Eisingerich, 2016. "Knowledge Extraction and Advanced Analyses Through Inverse Modelling Using Artificial Neural Networks," Managing Innovation and Diversity in Knowledge Society Through Turbulent Time: Proceedings of the MakeLearn and TIIM Joint International Conference 2016,, ToKnowPress.
  • Handle: RePEc:tkp:mklp16:503-511
    as

    Download full text from publisher

    File URL: http://www.toknowpress.net/ISBN/978-961-6914-16-1/papers/ML16-099.pdf
    File Function: full text
    Download Restriction: no

    File URL: http://www.toknowpress.net/ISBN/978-961-6914-16-1/MakeLearn2016.pdf
    File Function: Conference Programme
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tkp:mklp16:503-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maks Jezovnik (email available below). General contact details of provider: http://www.toknowpress.net/proceedings/978-961-6914-16-1/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.