IDEAS home Printed from https://ideas.repec.org/h/spr/stcchp/978-3-540-79128-7_9.html
   My bibliography  Save this book chapter

Condorcet Domains: A Geometric Perspective

In: The Mathematics of Preference, Choice and Order

Author

Listed:
  • Donald G. Saari

    (University of California)

Abstract

One of the several topics in which Fishburn (1997, 2002) has made basic contributions involves finding maximal Condorcet Domains. In this current paper, I introduce a geometric approach that identifies all such domains and, at least for four and five alternatives, captures Fishburn's clever alternating scheme (described below), which has advanced our understanding of the area. To explain “Condorcet Domains” and why they are of interest, start with the fact that when making decisions by comparing pairs of alternatives with majority votes, the hope is to have decisive outcomes where one candidate always is victorious when compared with any other candidate. Such a candidate is called the Condorcet winner. The attractiveness of this notion, where someone beats everyone else in head-to-head comparisons, is why the Condorcet winner remains a central concept in voting theory. For a comprehensive, modern description of the Condorcet solution concept, see Gehrlein's recent book (2006).

Suggested Citation

  • Donald G. Saari, 2009. "Condorcet Domains: A Geometric Perspective," Studies in Choice and Welfare, in: Steven J. Brams & William V. Gehrlein & Fred S. Roberts (ed.), The Mathematics of Preference, Choice and Order, pages 161-182, Springer.
  • Handle: RePEc:spr:stcchp:978-3-540-79128-7_9
    DOI: 10.1007/978-3-540-79128-7_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saari, Donald G., 2014. "Unifying voting theory from Nakamura’s to Greenberg’s theorems," Mathematical Social Sciences, Elsevier, vol. 69(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stcchp:978-3-540-79128-7_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.