Author
Abstract
The core concept of this paper can occur in the guise of various representations. Four of them are relevant here, the last one being new: 1. A MEDIUM, that is, a semigroup of transformations on a set of states, constrained by strong axioms (see Eppstein, Falmagne, & Ovchinnikov, 2008; Falmagne, 1997; Falmagne & Ovchinnikov, 2002). 2. An ISOMETRIC SUBGRAPH OF THE HYPERCUBE, OR “PARTIAL CUBE.” By “isometric”, we mean that the distance between any two vertices of the subgraph is identical to the distance between the same two vertices in the hypercube (Djoković, 1973; Graham & Pollak, 1971). Each state of the medium is mapped to a vertex of the graph, and each transformation corresponds to an equivalence class of its arcs. Note that, as will become clear later on, no assumption of finiteness is made in this or in any of the other representation. 3. An ISOMETRIC SUBGRAPH OF THE INTEGER LATTICE. This representation is not exactly interchangeable with the preceding one. While it is true that any isometric subgraph of the hypercube is representable as an isometric subgraph of the integer lattice and vice versa, the latter representation lands in a space equipped with a considerable amount of structure. Notions of “lines”, “hyperplanes”, or “parallelism” can be legitimately defined if one wishes. Moreover, the dimension of the lattice representation is typically much smaller than that of the partial cube representing the same medium and so can be valuable in the representation of large media (see, in particular, Eppstein, 2005, in which an algorithm is described for finding the minimum dimension of a lattice representation of a partial cube). 4. A MEDIATIC GRAPH. Axiomatic definitions are usually regarded as preferable whenever feasible, and that is what is given here.
Suggested Citation
Jean-Claude Falmagne & Sergei Ovchinnikov, 2009.
"Mediatic Graphs,"
Studies in Choice and Welfare, in: Steven J. Brams & William V. Gehrlein & Fred S. Roberts (ed.), The Mathematics of Preference, Choice and Order, pages 325-343,
Springer.
Handle:
RePEc:spr:stcchp:978-3-540-79128-7_19
DOI: 10.1007/978-3-540-79128-7_19
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stcchp:978-3-540-79128-7_19. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.