IDEAS home Printed from https://ideas.repec.org/h/spr/stcchp/978-3-540-35605-9_16.html
   My bibliography  Save this book chapter

Hidden Mathematical Structures of Voting

In: Mathematics and Democracy

Author

Listed:
  • Donald G. Saari

    (University of California)

Abstract

The complexities of voting theory are captured by Arrow’s Impossibility Theorem and McKelvey’s chaos result in spatial voting. A careful analysis of Arrow’s theorem, however, proves that not all of the supplied information is used by the decision rule. As such, not only does this seminal result admit a benign interpretation, but there are several ways to sidestep Arrow’s negative conclusion. McKelvey’s result is described in terms of more general voting rules. Then a new solution concept, called the ‘finesse point’, is introduced. This centrally located point generalizes the core and minimizes what it takes to respond to any proposal by another person.

Suggested Citation

  • Donald G. Saari, 2006. "Hidden Mathematical Structures of Voting," Studies in Choice and Welfare, in: Bruno Simeone & Friedrich Pukelsheim (ed.), Mathematics and Democracy, pages 221-234, Springer.
  • Handle: RePEc:spr:stcchp:978-3-540-35605-9_16
    DOI: 10.1007/3-540-35605-3_16
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McKelvey, Richard & Tovey, Craig A., 2010. "Approximation of the yolk by the LP yolk," Mathematical Social Sciences, Elsevier, vol. 59(1), pages 102-109, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stcchp:978-3-540-35605-9_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.