IDEAS home Printed from https://ideas.repec.org/h/spr/stcchp/978-3-540-27295-3_2.html
   My bibliography  Save this book chapter

Probabilistic Voting in the Spatial Model of Elections: The Theory of Office-motivated Candidates

In: Social Choice and Strategic Decisions

Author

Listed:
  • Jeffrey S. Banks

    (California Institute of Technology)

  • John Duggan

    (University of Rochester)

Abstract

Summary We unify and extend much of the literature on probabilistic voting in two-candidate elections. We give existence results for mixed and pure strategy equilibria of the electoral game. We prove general results on optimality of pure strategy equilibria vis-a-vis a weighted utilitarian social welfare function, and we derive the well-known “mean voter” result as a special case. We establish broad conditions under which pure strategy equilibria exhibit “policy coincidence,” in the sense that candidates pick identical platforms. We establish the robustness of equilibria with respect to variations in demographic and informational parameters. We show that mixed and pure strategy equilibria of the game must be close to being in the majority rule core when the core is close to non-empty and voters are close to deterministic. This controverts the notion that the median (in a one-dimensional model) is a mere “artifact.” Using an equivalence between a class of models including the binary Luce model and a class including additive utility shock models, we then derive a general result on optimality vis-a-vis the Nash social welfare function.

Suggested Citation

  • Jeffrey S. Banks & John Duggan, 2005. "Probabilistic Voting in the Spatial Model of Elections: The Theory of Office-motivated Candidates," Studies in Choice and Welfare, in: David Austen-Smith & John Duggan (ed.), Social Choice and Strategic Decisions, pages 15-56, Springer.
  • Handle: RePEc:spr:stcchp:978-3-540-27295-3_2
    DOI: 10.1007/3-540-27295-X_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stcchp:978-3-540-27295-3_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.