IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-319-92574-5_9.html
   My bibliography  Save this book chapter

Case Studies: Prognostics and Health Management (PHM)

In: Engineering Design under Uncertainty and Health Prognostics

Author

Listed:
  • Chao Hu

    (Iowa State University
    Iowa State University)

  • Byeng D. Youn

    (Seoul National University)

  • Pingfeng Wang

    (University of Illinois at Urbana–Champaign)

Abstract

Prognostics and health management (PHM) technology has been successfully implemented into engineering practice in diverse settings. This chapter presents case studies that explain successful PHM practices in several engineering applications: (1) steam turbine rotors, (2) wind turbine gearboxes, (3) the core and windings in power transformers, (4) power generator stator windings, (5) lithium-ion batteries, (6) fuel cells, and (7) water pipelines. These examples provide useful findings about the four core functions of PHM technology, contemporary technology trends, and industrial values.

Suggested Citation

  • Chao Hu & Byeng D. Youn & Pingfeng Wang, 2019. "Case Studies: Prognostics and Health Management (PHM)," Springer Series in Reliability Engineering, in: Engineering Design under Uncertainty and Health Prognostics, chapter 0, pages 303-342, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-319-92574-5_9
    DOI: 10.1007/978-3-319-92574-5_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-319-92574-5_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.