IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-319-63423-4_3.html
   My bibliography  Save this book chapter

A D-MMAP to Model a Complex Multi-state System with Loss of Units

In: Recent Advances in Multi-state Systems Reliability

Author

Listed:
  • Juan Eloy Ruiz-Castro

    (University of Granada)

Abstract

A complex multi-state system subject to different types of failures and preventive maintenance, with loss of units, is modelled by considering a discrete marked Markovian arrival process. The system is composed of K units, one online and the rest in cold standby. The online unit is submitted to different types of failures and when a non-repairable failure occurs the corresponding unit is removed. Several internal degradation states are considered which are observed when a random inspection occurs. This unit is subject to internal repairable failure, external shocks and preventive maintenance. If one internal repairable failure occurs, the unit goes to the repair facility for corrective repair, if a major degradation level is observed by inspection, the unit goes to preventive maintenance and when one external shock happens, this one may produce an aggravation of the internal degradation level, cumulative external damage or external extreme failure (non-repairable failure). Preventive maintenance and corrective repair times follow different distributions. The system is modelled in transient regime and relevant performance measures are obtained. All results are expressed in algorithmic and computational form and they have been implemented computationally with MATLAB and R. A numerical example shows the versatility of the model.

Suggested Citation

  • Juan Eloy Ruiz-Castro, 2018. "A D-MMAP to Model a Complex Multi-state System with Loss of Units," Springer Series in Reliability Engineering, in: Anatoly Lisnianski & Ilia Frenkel & Alex Karagrigoriou (ed.), Recent Advances in Multi-state Systems Reliability, pages 39-58, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-319-63423-4_3
    DOI: 10.1007/978-3-319-63423-4_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiz-Castro, Juan E. & Acal, Christian & Aguilera, Ana M. & Aguilera-Morillo, M. Carmen & Roldán, Juan B., 2021. "Linear-Phase-Type probability modelling of functional PCA with applications to resistive memories," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 186(C), pages 71-79.
    2. Juan Eloy Ruiz-Castro, 2021. "Optimizing a Multi-State Cold-Standby System with Multiple Vacations in the Repair and Loss of Units," Mathematics, MDPI, vol. 9(8), pages 1-29, April.
    3. Ruiz-Castro, Juan Eloy, 2020. "A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Sakurahara, Tatsuya & O'Shea, Nicholas & Cheng, Wen-Chi & Zhang, Sai & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Integrating renewal process modeling with Probabilistic Physics-of-Failure: Application to Loss of Coolant Accident (LOCA) frequency estimations in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-319-63423-4_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.