IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-319-52425-2_17.html
   My bibliography  Save this book chapter

Bayesian Networks and Infrastructure Systems: Computational and Methodological Challenges

In: Risk and Reliability Analysis: Theory and Applications

Author

Listed:
  • Francesco Cavalieri

    (University of Rome “La Sapienza”)

  • Paolo Franchin

    (University of Rome “La Sapienza”)

  • Pierre Gehl

    (University College London (UCL))

  • Dina D’Ayala

    (University College London (UCL))

Abstract

This chapter investigates the applicability of Bayesian Network methods to the seismic assessment of large and complex infrastructure systems. While very promising in theory, Bayesian Networks tend to quickly show limitations as soon as the studied systems exceed several dozens of components. Therefore a benchmark study is conducted on small-size virtual systems in order to compare the computational performance of the exact inference of various Bayesian Network formulations, such as the ones based on Minimum Link Sets. It appears that all formulations present some computational bottlenecks, which are either due to the size of Conditional Probability Tables, to the size of clique potentials in the junction-tree algorithm or to the recursive algorithm for the identification of Minimum Link Sets. Moreover, these formulations are limited to connectivity problems, whereas the accurate assessment of infrastructure systems usually requires the use of flow-based performance indicators. To this end, the second part of the chapter introduces a hybrid approach that presents the merit of accessing any type of system performance indicator: it uses simulation-based results and generates the corresponding Bayesian Network by counting the outcomes given the various combinations of events that have been sampled in the simulation. The issue of the system size is also addressed by a thrifty-naïve formulation, which limits the number of the components that are involved in the system performance prediction, by applying a cut-off threshold to the correlation coefficients between the components and system states. A higher resolution of this thrifty-naïve formulation is also obtained by considering local performance indicators, such as the flow at each sink. This approach is successfully applied to a realistic water supply network of 49 nodes and 71 pipes. Finally the potential of this coupled simulation-Bayesian approach as a decision support system is demonstrated, through probability updating given the observation of local evidences after an event has occurred.

Suggested Citation

  • Francesco Cavalieri & Paolo Franchin & Pierre Gehl & Dina D’Ayala, 2017. "Bayesian Networks and Infrastructure Systems: Computational and Methodological Challenges," Springer Series in Reliability Engineering, in: Paolo Gardoni (ed.), Risk and Reliability Analysis: Theory and Applications, pages 385-415, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-319-52425-2_17
    DOI: 10.1007/978-3-319-52425-2_17
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byun, Ji-Eun & Song, Junho, 2021. "A general framework of Bayesian network for system reliability analysis using junction tree," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Ali Lenjani & Ilias Bilionis & Shirley J. Dyke & Chul Min Yeum & Ricardo Monteiro, 2020. "A resilience-based method for prioritizing post-event building inspections," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 877-896, January.
    3. Costa, Rodrigo & Haukaas, Terje & Chang, Stephanie E. & Dowlatabadi, Hadi, 2019. "Object-oriented model of the seismic vulnerability of the fuel distribution network in coastal British Columbia," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 11-23.
    4. Mrinal Kanti Sen & Subhrajit Dutta & Golam Kabir, 2021. "Flood Resilience of Housing Infrastructure Modeling and Quantification Using a Bayesian Belief Network," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    5. Byun, Ji-Eun & Zwirglmaier, Kilian & Straub, Daniel & Song, Junho, 2019. "Matrix-based Bayesian Network for efficient memory storage and flexible inference," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 533-545.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-319-52425-2_17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.