IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-319-52425-2_15.html
   My bibliography  Save this book chapter

Batch and Recursive Bayesian Estimation Methods for Nonlinear Structural System Identification

In: Risk and Reliability Analysis: Theory and Applications

Author

Listed:
  • Rodrigo Astroza

    (Universidad de los Andes
    University of California, San Diego)

  • Hamed Ebrahimian

    (California Institute of Technology
    University of California, San Diego)

  • Joel P. Conte

    (University of California, San Diego)

Abstract

This chapter presents a framework for the identification of nonlinear finite element (FE) structural models using Bayesian inference methods. Using the input-output dynamic data recorded during an earthquake event, batch and recursive Bayesian estimation methods are employed to update a mechanics-based nonlinear FE model of the structure of interest (building, bridge, dam, etc.). Unknown parameters of the nonlinear FE model characterizing material constitutive models, inertia, geometric, and/or constraint properties of the structure can be estimated using limited response data recorded through accelerometers or heterogeneous sensor arrays. The updated nonlinear FE model can be used to identify the damage in the structure following a damage-inducing event. This framework, therefore, can provide an advanced tool for post-disaster damage identification and structural health monitoring. The batch estimation method is based on a maximum a posteriori estimation (MAP) approach, where the time history of the input and output measurements are used as a single batch of data for estimating the FE model parameters. This method results in a nonlinear optimization problem that can be solved using gradient-based and non-gradient-based optimization algorithms. In contrast, the recursive Bayesian estimation method processes the information from the measured data recursively, and updates the estimation of the FE model parameters progressively over the time history of the event. The recursive Bayesian estimation method results in a nonlinear Kalman filtering approach. The Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) are employed as recursive Bayesian estimation methods herein. For those estimation methods that require the computation of structural FE response sensitivities (total partial derivatives) with respect to the unknown FE model parameters, the direct differentiation method (DDM) is used. Response data numerically simulated from a nonlinear FE model (with unknown material model parameters) of a five-story two-by-one bay reinforced concrete frame building subjected to bi-directional horizontal seismic excitation are used to illustrate the performance of the proposed framework.

Suggested Citation

  • Rodrigo Astroza & Hamed Ebrahimian & Joel P. Conte, 2017. "Batch and Recursive Bayesian Estimation Methods for Nonlinear Structural System Identification," Springer Series in Reliability Engineering, in: Paolo Gardoni (ed.), Risk and Reliability Analysis: Theory and Applications, pages 341-364, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-319-52425-2_15
    DOI: 10.1007/978-3-319-52425-2_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-319-52425-2_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.