IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-319-30599-8_22.html
   My bibliography  Save this book chapter

Constraint-Based Virtualization of Industrial Networks

In: Principles of Performance and Reliability Modeling and Evaluation

Author

Listed:
  • Waseem Mandarawi

    (University of Passau)

  • Andreas Fischer

    (University of Passau)

  • Amine Mohamed Houyou

    (Siemens AG, Corporate Technology)

  • Hans-Peter Huth

    (Siemens AG, Corporate Technology)

  • Hermann Meer

    (University of Passau)

Abstract

In modern industrial solutions, Ethernet-based communication networks have been replacing bus technologies. Ethernet is no longer found only in inter-controller or manufacturing execution systems, but has penetrated into the real-time sensitive automation process (i.e., close to the machines and sensors). Ethernet itself adds many advantages to industrial environments where digitalization also means more data-driven IT services interacting with the machines. However, in order to cater to the needs of both new and more automation-related communication, a better restructuring of the network and resources among multitenant systems needs to be carried out. Various Industrial Ethernet (IE) standards already allow some localized separation of application flows with the help of Quality of Service (QoS) mechanisms. These technologies also expect some planning or engineering of the system which takes place by estimating worst-case scenarios of possible traffic generated by all assumed applications. This approach, however, lacks the flexibility to add new services or to extend the system participants on the fly without a major redesign and reconfiguration of the whole network. Network virtualization and segmentation is used to satisfy these requirements of more support for dynamic scenarios, while keeping and protecting time-critical production traffic. Network virtualization allows slicing of the real physical network connecting a set of applications and end devices into logically separated portions or Slices. A set of resource demands and constraints is defined on a Slice or Virtual Network level. Slice links are then mapped over physical paths starting from end devices through forwarding devices that can guarantee these demands and constraints. In this chapter, the modeling of virtual industrial network constraints is addressed with a focus on communication delay. For evaluation purposes, the modeled network and mapping criteria are implemented in the Virtual Network Embedding (VNE) traffic-engineering platform ALEVIN [1].

Suggested Citation

  • Waseem Mandarawi & Andreas Fischer & Amine Mohamed Houyou & Hans-Peter Huth & Hermann Meer, 2016. "Constraint-Based Virtualization of Industrial Networks," Springer Series in Reliability Engineering, in: Lance Fiondella & Antonio Puliafito (ed.), Principles of Performance and Reliability Modeling and Evaluation, pages 567-586, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-319-30599-8_22
    DOI: 10.1007/978-3-319-30599-8_22
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-319-30599-8_22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.