IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-031-28859-3_19.html
   My bibliography  Save this book chapter

System Reliability Models with Dependent Degradation Processes

In: Advances in Reliability and Maintainability Methods and Engineering Applications

Author

Listed:
  • Zhanhang Li

    (Rutgers University)

  • Chenyu Han

    (Rutgers University)

  • David W. Coit

    (Rutgers University)

Abstract

Interest and associated research for reliability and health prediction and maintenance of infrastructure and industrial products have increased continuously. The study of reliability and health prognosis has become an indispensable field in the overall design and evaluation of systems, industrial products and engineering projects. Previously, the common approaches and mathematical models to describe the condition of products were usually based on the statistical lifetime distribution of the target production. The lifetime distribution is obtained based on the observation and analysis of large quantities of components. However, when it comes to a single component, it can only quantify whether the component is functioning or not, rather than the detailed working condition or deterioration behavior. Therefore, degradation models are introduced to quantify the health conditions of the component based on time dependent observations. Alternatively, on the basis of the degradation model, by introducing the degradation threshold of product failure, the reliability model and the remaining useful life of the product and the corresponding maintenance strategy can also be derived. In practice, the evaluation of the degradation behavior of the system often needs to introduce multiple degradation processes while modeling, and these degradation processes are not always independent of each other. Due to factors inherent in the system or from the external environment, these degradation processes often affect each other and show some commonalities. Examples of such degradation include LED lighting systems (Sari et al. in Qual Reliab Eng Int 25:1067–1084, 2009), operating data of heavy-duty machine tools (Mi et al. in Reliab Eng Syst Saf 174:71–81, 2018), fatigue cracks of two terminals of an electronic device (Rodríguez-Picón et al. in Appl Stoch Model Bus Ind 35:504–521, 2019), etc. In this chapter, we will introduce various degradation models, as well as modeling approaches and reliability analysis to study dependent processes, such as dependent Markov chains, shared shock exposure models, joint distribution functions of degradation paths, and dependent random effects stochastic processes.

Suggested Citation

  • Zhanhang Li & Chenyu Han & David W. Coit, 2023. "System Reliability Models with Dependent Degradation Processes," Springer Series in Reliability Engineering, in: Yu Liu & Dong Wang & Jinhua Mi & He Li (ed.), Advances in Reliability and Maintainability Methods and Engineering Applications, pages 475-497, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-031-28859-3_19
    DOI: 10.1007/978-3-031-28859-3_19
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-031-28859-3_19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.