IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-031-21232-1_12.html
   My bibliography  Save this book chapter

Decision Support System for Ranking of Software Reliability Growth Models

In: Applications in Reliability and Statistical Computing

Author

Listed:
  • Devanshu Kumar Singh

    (Amity University)

  • Hitesh

    (Amity University)

  • Vijay Kumar

    (Amity Institute of Applied Sciences, Amity University)

  • Hoang Pham

    (Rutgers University)

Abstract

The requirement for Software Reliability Growth Models (SRGMs) has increased exponentially in response to the growing demand for strong and reliable software systems. During the testing phase of the Software Development Life Cycle (SDLC), SRGMs are particularly effective for estimating fault content, minimizing testing expenses, and maximizing software reliability. There has been a lot of research into selecting the best SRGMs for a certain failure dataset and then ranking all the SRGMs against the dataset. In this chapter, we have studied the mentioned problem and the solution to automate it with the developed compact Decision Support System (DSS), which includes all the functionalities and computational analysis of error logs and ensure error-free software to achieve the desired objective. The DSS is developed in Python utilizing several well-known packages such as Numpy, Scipy, Tkinter, and Pandas. To rank SRGMs employed in the DSS, we used Entropy & Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) ranking methodology. The implemented schema provides highly accurate performance indexes for the SRGMs required for efficient ranking, emphasizing the significance of the proposed prototype of DSS in the open literature, being a novel and ingenious development in the domain of software reliability.

Suggested Citation

  • Devanshu Kumar Singh & Hitesh & Vijay Kumar & Hoang Pham, 2023. "Decision Support System for Ranking of Software Reliability Growth Models," Springer Series in Reliability Engineering, in: Hoang Pham (ed.), Applications in Reliability and Statistical Computing, pages 227-244, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-031-21232-1_12
    DOI: 10.1007/978-3-031-21232-1_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-031-21232-1_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.