IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-030-43412-0_6.html
   My bibliography  Save this book chapter

Developing Alert Level for Aircraft Components

In: Reliability and Statistical Computing

Author

Listed:
  • Wai Yeung Man

    (The Hong Kong Polytechnic University)

  • Eric T. T. Wong

    (The Hong Kong Polytechnic University)

Abstract

In the aircraft industry maintenance is considered to be one of the key contributors to business success of an air carrier. By this, efforts are made to achieve maximum aircraft utilization with a reliability level as high as possible and minimal operating costs. As a result, aiming to increase profitability, and monitoring the reliability of an aircraft, its components and systems is of great benefit to aircraft carriers. As per Hong Kong Civil Aviation Department (HKCAD) requirements, all registered aircraft must have an approved maintenance schedule (AMS) to ensure aviation safety. In the AMS, system or component reliability plays an important role in condition-monitored maintenance program. To assist in the assessment of reliability of aircraft components, alert levels are established for the components which are to be controlled by the program. An alert level can help the operator to monitor engineering performance of an aircraft system or component during routine operations. Besides a consideration of the quality management processes to be contained within the AMS, this paper illustrates the development of an alert level for a helicopter air-conditioning system (ACS). The function of an ACS is to regulate the temperature, humidity, and air flow inside the helicopter. The reliability of the ACS is therefore important to an air operator. Once the alert level is triggered, approved maintenance actions need to be executed, such as component repair or replacement. In this paper, ACS of the helicopter McDonell Douglas 902 Explorer was chosen to illustrate the development of an alert level for the purpose of improving operational performance.

Suggested Citation

  • Wai Yeung Man & Eric T. T. Wong, 2020. "Developing Alert Level for Aircraft Components," Springer Series in Reliability Engineering, in: Hoang Pham (ed.), Reliability and Statistical Computing, pages 85-106, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-030-43412-0_6
    DOI: 10.1007/978-3-030-43412-0_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-030-43412-0_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.