IDEAS home Printed from https://ideas.repec.org/h/spr/ssrchp/978-3-030-31375-3_3.html
   My bibliography  Save this book chapter

Planning Methods for Production Systems Development in the Energy Sector and Energy Efficiency

In: Advances in Reliability Analysis and its Applications

Author

Listed:
  • Z. N. Milovanović

    (University of Banja Luka)

  • Lj. R. Papić

    (DQM Research Center)

  • S. Z. Milovanović

    (University of Banja Luka)

  • V. Z. Janičić Milovanović

    (Routing Ltd.)

  • S. R. Dumonjić-Milovanović

    (Partner Engineering Ltd.)

  • D. Lj. Branković

    (SHP Celex)

Abstract

Economic development of a country requires the consumption of appropriate energy resources. Any deviation from the timing as a result may have the appearance of development restrictions in the other economic activities, so the development of energy consumption should be continuously monitored. On the other hand, energy consumption itself is linked to certain influential factors (population growth, science and technology development, economic development, standard, etc.), which intensity of activity changes over time. Choosing the optimal structure for covering consumption is very important for the development of energy. Planning of development in the field of energy is important as for the dependence of the development of the society on safe, sufficient and appropriate quantities of necessary forms of energy, as well as for the engagement of large financial resources in this field. When planning the development of energy, the following criteria should be followed: the security of consumer supply with minimal costs, the rational use of domestic sources, with proper evaluation of imported energy forms, maximum prevention of monopolistic and single forms of energy, and achieving acceptable conditions for environmental protection and sustainable development. Planning of the development of the electric power system includes all activities from the first assumptions about the possibility of building an object until its entry into operation. But in terms of terminology, the term planning refers primarily to the planning of power generation plants (hydro, nuclear and thermal power plants). When planning the development of the electro-energy system (EES), the goal and criteria are uniquely determined: the settlement of the predicted consumption of electricity at a minimum cost and assuming that the specified limitations are met, such as, financial, technical, ecological, limitations on the availability of primary forms of energy, etc. Satisfying the limitations is imposed as a primary task, regardless of the method of planning, which is the reason that a particular limitation is often the decisive factor in deciding on the final strategies of development. Although long-term plans bear a great deal of uncertainty, such planning is necessary primarily for two reasons: the first is the basic and extended lifetime of the production plants (e.g., 25–30 basic plus 15–20 years of extended service life after revitalization, reconstruction and modernization of thermal power plant), while the second is the time necessary for the preparation of the construction and the construction itself (3–6 years, not counting the possibility of a delay in the project). Planning of the construction of production plants should be determined by the necessary construction to meet the future consumption (volume and capacity), the time of entry of a particular production plant into operation and the possibility and improvement of technologies for production of electricity (improved and cleaner technologies, cogeneration and trigeneration systems, hybrid systems, …). Only the making of development studies can be divided into two parts, which include simulation of the legality of work in the system (system operation), as well as the economic evaluation of production facilities or entire development plans. The first part requires the development of a system model, i.e. it is necessary to describe the system in mathematical equations and to approximate it with the inevitable neglect and simplification. In the second part, the energy contribution of each plant should be evaluated and by economic methods to do its valorization. The methods used in planning the development of the electric power system differ with respect to: optimization technique (linear programming, nonlinear programming, etc.), type of approximation (linear, nonlinear) and economic valorization (with inflation, without inflation). None of these methods has proven to be absolutely acceptable for all problems so far, so a large number of methods are being developed that are intended to solve partial problems, i.e. or they serve to optimize the self-production facilities, or optimize only the transmission/distribution network, or the process of optimization refers to the whole energy (with very simplified relationships in the given system). The basic assumption of applying optimization models is the high reliability of the parameters on which the budget is based. Namely, if the parameters are not reliable enough, the question arises of the need for optimization. Sometimes, even the sensitivity analysis, usually used in the final phase of any optimization model, cannot eliminate effective reliability and input data. Furthermore, it is never possible to include all the limitations within the model, so that only an approximately objective picture of the condition in the system is obtained. However, today, it is impossible to rely solely on the intuition of planners in selecting the most favorable development option, so the application of the model is inevitable (more criterion evaluation methods). Energy development planning is based on the security of consumer supply with minimal costs, with the accompanying rational use of domestic resources, which implies correct evaluation of imported energy forms, maximum prevention of monopolistic behavior (the only form of energy available) and achieving satisfactory environmental protection conditions. When planning the development of the electricity sector of any country, the goal and criteria are uniquely determined through the settlement of the estimated electricity consumption, with minimum costs and assuming that certain financial, technical and environmental limitations on the availability of primary forms of energy are met. The new value of own consumption of a thermal power plant, which can be achieved by applying the proposed measures, is still above reference values in relation to similar systems in the world, which means that there is still a serious work on analyzing possible savings and reducing losses as a whole. It should be noted that it is expected that in the first period of implementation of the energy management system, several short-term measures will be identified, which do not require financial investments and are more of an organizational nature. After the introduction of the BAS ISO 50001 standard and the application of appropriate standardized procedures in practice, the number of short-term measures will be reduced, which also indicates an organized monitoring of the implementation of energy efficiency measures.

Suggested Citation

  • Z. N. Milovanović & Lj. R. Papić & S. Z. Milovanović & V. Z. Janičić Milovanović & S. R. Dumonjić-Milovanović & D. Lj. Branković, 2020. "Planning Methods for Production Systems Development in the Energy Sector and Energy Efficiency," Springer Series in Reliability Engineering, in: Mangey Ram & Hoang Pham (ed.), Advances in Reliability Analysis and its Applications, pages 95-148, Springer.
  • Handle: RePEc:spr:ssrchp:978-3-030-31375-3_3
    DOI: 10.1007/978-3-030-31375-3_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssrchp:978-3-030-31375-3_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.