IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-99-5601-2_9.html
   My bibliography  Save this book chapter

Brownian Motion Process

In: Introduction to Stochastic Processes Using R

Author

Listed:
  • Sivaprasad Madhira

    (Savitribai Phule Pune University)

  • Shailaja Deshmukh

    (Savitribai Phule Pune University)

Abstract

This chapter considers a continuous time continuous state space Markov process known as Brownian motion or Wiener process. After tracing its history in Sect. 1, Brownian motion is defined in Sect. 2 and some of its properties are discussed. Using the continuity property of the sample paths and reflection principle, distributions of the maximum and minimum of a Wiener process over a bounded time interval are derived in Sect. 3. There are many variations and extensions of a Wiener process. Sections 4 and 5 present two extensions, namely the Brownian bridge and geometric Brownian motion, respectively. In Sect. 6, we briefly introduce some more variations including the Ornstein-Uhlenbeck process. R codes used for illustrations are given in Sect. 7.

Suggested Citation

  • Sivaprasad Madhira & Shailaja Deshmukh, 2023. "Brownian Motion Process," Springer Books, in: Introduction to Stochastic Processes Using R, chapter 0, pages 487-545, Springer.
  • Handle: RePEc:spr:sprchp:978-981-99-5601-2_9
    DOI: 10.1007/978-981-99-5601-2_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-99-5601-2_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.