Author
Listed:
- Cheng Wang
(Tongji University)
Abstract
Graph neural networks (GNNs) are playing exciting roles in the application scenarios where features are hidden in information associations. Fraud prediction of online credit loan services (OCLSs) is such a typical scenario. But it has another rather critical challenge, i.e., the scarcity of data labels. Fortunately, GNNs can also cope with this problem due to their good ability of semi-supervised learning by mining structure and feature information within graphs. Nevertheless, the gain of internal information is often too limited to help GNNs handle the extreme deficiency of labels with high performance beyond the basic requirement of fraud prediction in OCLSs. Therefore, adding labels from the experts, such as manually adding labels through rules, has become a logical practice. However, the existing rule engines for OCLSs have the confliction problem among continuously accumulated rules. To address this issue, we propose a Snorkel-based Semi-Supervised GNN (S3GNN). Under S3GNN, we specially design an upgraded version of the rule engines, called Graph-Oriented Snorkel (GOS), a graph-specific extension of Snorkel, a widely-used weakly supervised learning framework, to design rules by subject matter experts (SMEs) and resolve confliction. In particular, in the graph of anti-fraud scenario, each node pair may have multiple different types of edges, so we propose the Multiple Edge-Types Based Attention mechanism. In general, for the heterogeneous information and multiple relations in the graph, we first obtain the embedding of applicant nodes by aggregating the representation of attribute nodes, and then use the attention mechanism to aggregate neighbor nodes on multiple meta-paths to get ultimate applicant node embedding. We conduct experiments over the real-life data of a large financial platform. The results demonstrate that S3GNN can outperform the state-of-the-art methods, including the method of pilot platform.
Suggested Citation
Cheng Wang, 2023.
"Knowledge Oriented Strategies: Dedicated Rule Engine,"
Springer Books, in: Anti-Fraud Engineering for Digital Finance, chapter 0, pages 139-162,
Springer.
Handle:
RePEc:spr:sprchp:978-981-99-5257-1_6
DOI: 10.1007/978-981-99-5257-1_6
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-99-5257-1_6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.