IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-33-4359-7_56.html
   My bibliography  Save this book chapter

Customer Churn Prediction in the Broadband Service on Machine Learning

In: Liss 2020

Author

Listed:
  • Yujie Guo

    (Beijing Jiaotong University)

  • Lei Huang

    (Beijing Jiaotong University)

Abstract

With the development of the telecom industry, the telecom industry is gradually saturated. In order to increase profits, telecom companies must reduce the churn of old customers. As an important part of telecom customers, the study of broadband customer churn prediction is helpful for enterprises to find the customer churn and make effective measures timely. In this study, two feature classification methods, RF-RFE and SVM-RFE, and four prediction classification algorithms, namely Logistic Regression, KNN, SVM model and XGBoost model were compared. GridCV is used to adjust the parameters of the method to achieve the optimal effect. The assessment found that the XGBoost model performed better than other models in predicting broadband customer churn. This provides a good reference for predicting the churn of broadband customers.

Suggested Citation

  • Yujie Guo & Lei Huang, 2021. "Customer Churn Prediction in the Broadband Service on Machine Learning," Springer Books, in: Shifeng Liu & Gábor Bohács & Xianliang Shi & Xiaopu Shang & Anqiang Huang (ed.), Liss 2020, pages 811-821, Springer.
  • Handle: RePEc:spr:sprchp:978-981-33-4359-7_56
    DOI: 10.1007/978-981-33-4359-7_56
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-33-4359-7_56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.