IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-19-4460-4_6.html
   My bibliography  Save this book chapter

Sweet Spots or Dark Corners? An Environmental Sustainability View of Big Data and Artificial Intelligence in ESG

In: Handbook of Big Data and Analytics in Accounting and Auditing

Author

Listed:
  • Beatrice Crona

    (Royal Swedish Academy of Sciences)

  • Emma Sundström

    (Stockholm University)

Abstract

This chapter examines environmental aspects of ESG and risks and opportunities for using big data (BD) and artificial intelligence (AI) to capture these in ESG ratings. It starts by outlining the difference between relative and absolute sustainability and what this means for delivering on globally agreed upon targets, such as the Sustainable Development Goals. We then look at what the state-of-the-art climate and Earth System science has to offer investors interested in absolute environmental sustainability. Next, we discuss the risks associated with a blurring of concepts relating to sustainability and materiality, and examine and contrast conventional ESG rating procedures with new approaches informed by BD and AI to understand what this new generation of tools can offer investors interested in sustainability. We note a current misalignment between stated ambitions of investors, and the ability to deliver on stated goals through the use of current ESG metrics and ratings. We therefore finish with suggestions for how to better align these and how those interested in ESG can become more ‘sustainability savvy’ consumers of such ratings.

Suggested Citation

  • Beatrice Crona & Emma Sundström, 2023. "Sweet Spots or Dark Corners? An Environmental Sustainability View of Big Data and Artificial Intelligence in ESG," Springer Books, in: Tarek Rana & Jan Svanberg & Peter Öhman & Alan Lowe (ed.), Handbook of Big Data and Analytics in Accounting and Auditing, chapter 0, pages 105-131, Springer.
  • Handle: RePEc:spr:sprchp:978-981-19-4460-4_6
    DOI: 10.1007/978-981-19-4460-4_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-19-4460-4_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.