IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-19-4460-4_19.html
   My bibliography  Save this book chapter

Learning Analytics in Informal, Participatory Collaborative Learning

In: Handbook of Big Data and Analytics in Accounting and Auditing

Author

Listed:
  • Michelle L. F. Cheong

    (Singapore Management University)

  • Aditya V. Singh

    (Singapore Management University)

  • Jean Y.-C. Chen

    (Singapore Management University)

  • Bing Tian Dai

    (Singapore Management University)

Abstract

Learning Analytics was recognized to be “the third wave of large-scale developments in instructional technology”. Learning Management Systems (LMSs) have been widely adopted as the learning analytics tools because the captured data represents how the learners’ interact with the system during formal learning. However, most LMSs’ analytics models do not capture learning activities outside the systems. We built an integrated Telegram mobile application and a web-based portal discussion forum, to enable informal, participatory and collaborative learning beyond the classroom. We analyzed student-initiated question-and-answer discussion posts where our machine learning algorithm will predict the quality of the posts, and the system will prompt the students to improve their posts. With six in-built engagement features, our system generated higher number of high-quality posts, resulting in better learning outcomes among the students. Based on three implementation runs in an undergraduate course, our results show that there were positive correlations between post quality and student assessment outcomes. Students who used the system could achieve higher knowledge gain, and in-class intervention by the course instructor to review the weekly discussion posts will further improve knowledge gain. Mandatory participation benefitted the academically stronger students, while academically weaker students will need positive intervention actions when mandatory use of the system is enforced. We envisage that our system can be a successful alternative for workplace learning and ultimately contribute to organization knowledge creation. Using the system, working professionals can post questions and answers shared among peers within their own organizations and learn through such informal discussions, which can be blended seamlessly in their day-to-day workflow. While our system has not been implemented in workplace learning, we attempt to draw inference from our implementation results, to understand the parallels in the business organization context.

Suggested Citation

  • Michelle L. F. Cheong & Aditya V. Singh & Jean Y.-C. Chen & Bing Tian Dai, 2023. "Learning Analytics in Informal, Participatory Collaborative Learning," Springer Books, in: Tarek Rana & Jan Svanberg & Peter Öhman & Alan Lowe (ed.), Handbook of Big Data and Analytics in Accounting and Auditing, chapter 0, pages 439-462, Springer.
  • Handle: RePEc:spr:sprchp:978-981-19-4460-4_19
    DOI: 10.1007/978-981-19-4460-4_19
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-19-4460-4_19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.