Author
Listed:
- Sarah Tuck
(University of Plymouth)
- John Dinwoodie
(University of Plymouth)
- Harriet Knowles
(University of Plymouth)
- James Benhin
(University of Plymouth)
Abstract
Ports are coming under increasing pressure to manage their operations in an environmentally sustainable manner. This pressure comes from legal requirements, national agencies, planning inquiries and local activists (Wooldridge et al 1999). Ports have tended to react to such demands by making environmental policies and audits, always playing catch-up to the latest problem. An alternative approach is to be pro-active in seeking out environmental concerns at an early stage, assessing the scientific evidence of harm in the context of the specific port, and taking mitigating action according to the evidence. This is the basis of a Knowledge Transfer Partnership between the University of Plymouth and Falmouth Harbour Commissioners (FHC), who run a small trust port in South West England. The Port of Falmouth enjoys over thirty cruise calls a year. Smaller cruise liners can berth within the docks, but larger ships must anchor in Falmouth Bay, a Marine Special Area of Conservation, and tender their passengers ashore. Anchoring directly affects the benthic habitat through smothering, abrasion and disturbance. The noise and visual intrusion of vessels create an indirect impact. Studies into anchoring activities in fragile habitats such as eelgrass beds have led to the strict management of anchoring (Milazzo et al 2002). Falmouth Bay has a rare dead maerl habitat. This paper presents the on-going study, which is assessing the potential environmental impacts of anchoring in the Falmouth bay area. The steps include synthesising existing data on the nature of the seabed, recording actual anchor locations within the bay to identify areas of high anchoring density and identifying the threat that anchoring poses to the species in the maerl habitat. It is know that there are bivalves that live below the surface, so comparative core samples will be air lifted from high and low anchoring density areas.
Suggested Citation
Sarah Tuck & John Dinwoodie & Harriet Knowles & James Benhin, 2011.
"Assessing the Environmental Impact of Anchoring Cruise Liners in Falmouth Bay,"
Springer Books, in: Philip Gibson & Alexis Papathanassis & Petra Milde (ed.), Cruise Sector Challenges, chapter 6, pages 93-106,
Springer.
Handle:
RePEc:spr:sprchp:978-3-8349-6871-5_6
DOI: 10.1007/978-3-8349-6871-5_6
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-8349-6871-5_6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.