IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7908-2739-2_27.html
   My bibliography  Save this book chapter

The Self-Organizing Map in Selecting Companies for Tax Audit

In: Emerging Themes in Information Systems and Organization Studies

Author

Listed:
  • Minna Kallio

    (Åbo Akademi University)

  • Barbro Back

    (Åbo Akademi University)

Abstract

Today, Tax Authorities receive the tax reports from companies to a large extent in digital form from the companies in Finland. Most of the tax reports are processed routinely i.e., a computer program checks that the taxes paid in advance are the correct ones and if not, the company either receives a tax return or is asked to pay the difference and there is no need for a tax audit. However, there is a small percentage of companies that need it. Most of these companies – for some reason – have not reported all their income items or have reported cost items that do not belong to their report. This could be unintended or it could be fraud. The problem is to find this percentage from the mass of tax reports. So far, the tax auditors or tax inspectors have used their past experience and posed queries to the data base, where the reports are stored, to find the ones that need a tax audit. This is not necessarily the most effective way of finding the tax reports that need a tax audit. Different data mining tools might aid in this process and make the selections of companies that need tax audit more effective. The aim of this paper is to investigate how well an unsupervised neural network method – the self-organizing map (SOM) – can perform in the task of finding the companies that need to be tax audited. SOM is a data driven approach without a need to have predefined rules or sets of values. A real data set is used and the results are compared to the results that the tax inspectors have received with their methods.

Suggested Citation

  • Minna Kallio & Barbro Back, 2011. "The Self-Organizing Map in Selecting Companies for Tax Audit," Springer Books, in: Andrea Carugati & Cecilia Rossignoli (ed.), Emerging Themes in Information Systems and Organization Studies, pages 347-358, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7908-2739-2_27
    DOI: 10.1007/978-3-7908-2739-2_27
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amani, Farzaneh A. & Fadlalla, Adam M., 2017. "Data mining applications in accounting: A review of the literature and organizing framework," International Journal of Accounting Information Systems, Elsevier, vol. 24(C), pages 32-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7908-2739-2_27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.