IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-658-45601-6_2.html
   My bibliography  Save this book chapter

Generated Pre-trained Transformer-Programme, GPT

In: Texten mit ChatGPT

Author

Listed:
  • Albert Heiser

    (Creative Game Institut)

Abstract

Zusammenfassung Sprachmodelle wie ChatGPT erzeugen menschenähnliche Texte. Wir beginnen zunächst mit einem Schlüsselelement dieses Fortschritts, der Transformer-Architektur, die eine enorme Steigerung der Fähigkeiten von Chatbots ermöglicht. GPT-Modelle sind eine Black Box, weil sich die Entwickler nicht in ihre Codes und Trainingsdaten blicken lassen. Die Qualität der Texte hängt stark von den Datenquellen ab, auf deren Basis sie trainiert wurden. Wem gehören diese Daten und nach welchen Prinzipien wurden sie programmiert? Der EU AI Act versucht KI-Systeme zu regulieren und stellt Fragen nach ihrer Vertrauenswürdigkeit. Nur wenn diese Fragen beantwortet werden, können wir sicher sein, dass KI-Modelle ethisch vertretbar sind.

Suggested Citation

  • Albert Heiser, 2024. "Generated Pre-trained Transformer-Programme, GPT," Springer Books, in: Texten mit ChatGPT, chapter 0, pages 9-41, Springer.
  • Handle: RePEc:spr:sprchp:978-3-658-45601-6_2
    DOI: 10.1007/978-3-658-45601-6_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-658-45601-6_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.