IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-658-41084-1_15.html
   My bibliography  Save this book chapter

Mit künstlicher Intelligenz zu mehr Entscheidungsfähigkeit in der Logistik

In: Die Neuerfindung der Logistik

Author

Listed:
  • Volker Stich
  • Justus Aaron Benning

Abstract

Zusammenfassung Anwendungsfälle wie intelligente Routenoptimierung und fortschrittliche Simulationsalgorithmen repräsentieren das riesige Einsatzspektrum von Methoden der künstlichen Intelligenz. Steigende Anforderungen an Liefertermintreue, Flexibilität und Transparenz wie bspw. Emissionsverfolgung, erfordern zunehmend den Einsatz von KI. Die Nutzung dieser Schlüsseltechnologie und die Hebung der Potenziale scheitern oft an der Komplexität in Bezug auf die Eingrenzung und Identifikation von wirtschaftlich relevanten Anwendungsfällen. Unternehmen müssen den Business Fit zwischen den wirtschaftlichen Erfolgsaussichten und den dafür benötigten digitalen Bausteinen herstellen. Mit dem Digital-Architecture Management lassen sich die relevanten KI-basierten Anwendungsfälle identifizieren und eine Roadmap aufbauen, um die datenbasierte Entscheidungsfähigkeit in der Logistik zu verbessern.

Suggested Citation

  • Volker Stich & Justus Aaron Benning, 2023. "Mit künstlicher Intelligenz zu mehr Entscheidungsfähigkeit in der Logistik," Springer Books, in: Peter H. Voß (ed.), Die Neuerfindung der Logistik, chapter 15, pages 171-178, Springer.
  • Handle: RePEc:spr:sprchp:978-3-658-41084-1_15
    DOI: 10.1007/978-3-658-41084-1_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-658-41084-1_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.