IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-658-35779-5_33.html
   My bibliography  Save this book chapter

Durch KI wird die Medizin effizienter, individueller und präventiver

In: Arbeitswelt und KI 2030

Author

Listed:
  • Joachim Hornegger

    (Friedrich-Alexander Universität Erlangen-Nürnberg (FAU))

Abstract

Zusammenfassung Künstliche Intelligenz und maschinelles Lernen haben das Potenzial, die Medizin grundlegend zu revolutionieren. Schon heute zeigen KI-Programme, dass sie bei der Auswertung medizinischer Bilddaten dem Arzt überlegen sein können. Sensorbasiertes Monitoring in Verbindung mit selbstlernenden Algorithmen verlagert den Schwerpunkt zunehmend von der Klinik in das häusliche Umfeld, von der Therapie bis hin zur Prävention. Die systematische Analyse strukturierter Informationen mittels Data-Mining-Verfahren liefert neue Erkenntnisse über die Entstehung von Krankheiten und den Erfolg medizinischer Intervention und Therapien. Entscheidend wird sein, wie Informationen künftig zusammengeführt werden und wie der Einzelne die Hoheit über seine Daten behält.

Suggested Citation

  • Joachim Hornegger, 2021. "Durch KI wird die Medizin effizienter, individueller und präventiver," Springer Books, in: Inka Knappertsbusch & Kai Gondlach (ed.), Arbeitswelt und KI 2030, pages 321-329, Springer.
  • Handle: RePEc:spr:sprchp:978-3-658-35779-5_33
    DOI: 10.1007/978-3-658-35779-5_33
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-658-35779-5_33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.