Author
Abstract
Zusammenfassung In den bisherigen Ausführungen standen mathematische bzw. stochastische Modelle für zufallsabhängige Phänomene (Zufallsexperimente), beispielsweise Urnenexperimente oder Würfelwürfe im Mittelpunkt. Von besonderer Bedeutung waren dabei Eigenschaften verteilter Zufallsvariablen $$X_{i}$$ X i in Form von Volatilitäten bzw. Schwankungsrisiken und Compound-verteilten Ereignisrisiken mit und ohne Begrenzungen zu beschreiben. Stochastische Prozesse gehen über diese singuläre Betrachtung zeitlich eindimensionaler Risiken hinaus und betrachten das Konzept der stochastisch unabhängigen Folgen identisch verteilter Zufallsvariablen auf einem festgelegten, in die Zukunft gerichteten Zeitstrahl oder aufeinanderfolgender Zufallsexperimente. Das wesentliche Kriterium eines stochastischen Prozesses von einer Folge durchgeführter Experimente ist, dass das in den vorangegangenen Versuchen erzielte Ergebnis auf das Gesamtergebnis Einfluss nimmt. Ein stochastischer Prozess wird als Folge von Zufallsvariablen $$X\left( t \right)_{t}$$ X t t , mit dem zeitlichen Index $$t$$ t aus einer Indexmenge der natürlichen Zahlen definiert (vgl. [10, 15]). Abhängig davon, ob für jedes Teilsegment eines Intervalls eine oder nur für etwa ganzzahlige $$t$$ t eine Zufallsvariable $$X\left( t \right)_{t}$$ X t t bestimmbar ist, unterscheidet man stetige oder diskrete stochastische Prozesse als Funktion über die Indexmenge $$t$$ t . Eine beispielhafte Anwendung der Theorie stochastischer Prozesse erfolgt in der Analyse von Zeitreihen, in der Marktforschung und insbesondere auch in der Betrachtung mehrerer Perioden im Risikomanagement. Dabei wird ausgehend von einer belastbaren Planung, versucht über $$n$$ n Perioden in die Zukunft eine Prognose über mögliche Entwicklungen abzuleiten.
Suggested Citation
Frank Romeike & Manfred Stallinger, 2021.
"Stochastische Prozesse,"
Springer Books, in: Stochastische Szenariosimulation in der Unternehmenspraxis, chapter 0, pages 211-234,
Springer.
Handle:
RePEc:spr:sprchp:978-3-658-34063-6_6
DOI: 10.1007/978-3-658-34063-6_6
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-658-34063-6_6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.