IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-658-33597-7_42.html
   My bibliography  Save this book chapter

Smarte Systeme in Rehabilitation und Prävention. Wie künstliche Intelligenz und Gamification das Bewegungstraining individualisieren

In: Künstliche Intelligenz im Gesundheitswesen

Author

Listed:
  • Oliver Korn

    (Hochschule Offenburg)

  • Steffen Willwacher

    (Hochschule Offenburg)

Abstract

Zusammenfassung Rehabilitationsmaßnahmen nach Unfällen oder Krankheiten sind oft langwierig und häufig mit Schmerzen sowie Frustration verbunden – und Ähnliches gilt für Präventionstraining. Die spielerische Anreicherung des Trainings (im Folgenden: Gamification) kann dieser Entwicklung durch die Steigerung des Spaßfaktors entgegenwirken. Im Gegensatz zu regulären Spielen kann es durch die höhere Motivation und Immersion im Training allerdings zu einer verminderten Schmerzwahrnehmung und damit einer Verschlechterung des Gesundheitszustands bis hin zu einer erneuten Verletzung kommen. Daher war es bislang erforderlich, solche Ansätze kontinuierlich therapeutisch zu begleiten. Für eine autonome Intervention, zur Entlastung von Therapeuten, aber auch im Heimbereich ist eine automatisierte Anpassung des Schwierigkeitsgrads des Bewegungstrainings und eine individualisierte Zielsetzung und -kontrolle von zentraler Bedeutung. Diese Herausforderung ist in bestehenden Ansätzen zu wenig adressiert bzw. beschrieben worden. Der Einsatz künstlicher Intelligenz kann hier einen entscheidenden Beitrag zu leisten – insbesondere hybride Ansätze, die expertenbasierte Entscheidungsbäume mit Verfahren des maschinellen Lernens kombinieren, könnten in der Zukunft einen wichtigen Beitrag zu einer erfolgreichen Rehabilitation und Prävention liefern.

Suggested Citation

  • Oliver Korn & Steffen Willwacher, 2022. "Smarte Systeme in Rehabilitation und Prävention. Wie künstliche Intelligenz und Gamification das Bewegungstraining individualisieren," Springer Books, in: Mario A. Pfannstiel (ed.), Künstliche Intelligenz im Gesundheitswesen, chapter 0, pages 867-879, Springer.
  • Handle: RePEc:spr:sprchp:978-3-658-33597-7_42
    DOI: 10.1007/978-3-658-33597-7_42
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-658-33597-7_42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.